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FOREWORD "

Seven comprehensive Technical Reports were issued under Contract N6ori-20, Task Order IX,

Project 019 101, with the Office of Naval Research: a Quarterly Report for the period 1 June 1947 to

31 August 1947; an Annual Report (in two parts) for the period from 1 September 1947 to 31 August 1948;

a Report (in two parts) for the period 1 September 1948 to 31 March 1950; a Report (in two parts) for the

period 1 April 1950 to 31 March 1951; a Report (in two parts) for the period 1 April to 31 March 1952.

The Technical Report for 1952-3, issued in two parts, and Part One of the Technical Report

for 1953-4, which covered roughly the period 1 October 1953 to 31 March 1954, were issued jointly

under this Laboratory's contract with the Office of Naval Research (ONR) and Contract DA-11-022-1002,

Project TB2-0001 (505) with the Office of Ordnance Research (OOR). Part Two of the Technical Report

for 1953-4 was issued jointly under these contracts and Contract AF18(600)-471, Project No. R-351-40-4

with the Office of Scientific Research (AFOSR) of the Air Research and Development Command (ARDC).

The Technical Reports for 1955 and 1956 were issued jointly under the contracts with ONR, OOR, AFSOR,

and under Contract AF19(604)1-019 with the Geophysics Research Directorate (GRD) of the Air Force

Cambridge Research Center. The OOR contract was extended without additional funds from 1 October

1957 through 30 September 1958 and a Final Report was issued.

The work under the original ONR Contract N6ori-Z0, IX, Project 019101 was completed on

30 September 1956, anda Final Report was issued. A new contract, Nonr-2121 (01), went into effect

I October 1956: work described in the 1956 and subsequent Technical Reports and supported by the ONR

has been done under this contract.

The original GRD contract terminated 25 October 1957. This work was continued under GRD

contract AF19(604)-3478 which terminated 19 December 1959. The work has further continued, beginning

15 January 1960, under contract AF19(604)-6662 with the Electronics Systems Division (AFESR) of the

Air Force Systems Command (AFSC). At the termination of this contract on 14 January 1963, a final

report was issued and work continues under a new contract AF19(628)-2474, for the period 15 January

1963 through 31 March 1966.

The AFOSR contract was extended for two years from 1 October 1956 without added funds but

with the provision of ample computing time, for the completion of the work under the contract on the

Univac Scientific (Remington-Rand 1103 and 1103A) electronic digital computers at Wright Field Air

Force Base (WADC); a Final Report was issued. With the availability of these computer facilities,

new funded support from a National Science Foundation (NSF) grant make it possible to carry this work

further forward.

All the contract mentioned thus far were under the direction of Professor R. S. Mulliken as

Principal Investigator. A one-year contract from WADC, AF33(616)-5608 with Professor C. C. J.

Roothaan as Principal Investigator went into effect 1 April 1958, and the use of the computing facilities

at WADC since 30 September 1958 on all the contracts and the NSF grant was under the auspices of this

contract, extended on a no-cost basis through 31 May 1959. These computing facilities continued to be

made available under a one-year contract AF49(638)-699 from AF Office of Scientific Research, Office

of Aerospace Research which expired 30 June 1960. Continued use was made of the facilities under

AFOSR, OAR contract AF49(638)-1068 which commenced I April 1961 and terminated 30 April 1962.

Under a new contract AF33(657)-8891 which was funded I May 1962, use of the computing facilities at

WADC was continued through September 1962. In October 1962, all computational efforts were trans-

ferred to new facilities established at the University of Chicago Computation Center, with Professor

C. C. J. Roothaan as Director. These facilities originally consisted of an IBM 7090 and IBM 1401

VI
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and peripheral equipment, but in June 1963 conversion of the IBM 7090 to a 7094 was carried out, and

in December of 1964 the 1401 was replaced by an IBM 7040. All computing efforts now employ the

University of Chicago Computing Center IBM 7040-7094 system.

Beginning 12 June 1959, a three-year contract with the OOR (now the Army Research Office,

ARO) has been in effect, sponsored under auspices of.Advanced Research Projects Agency, funded

under ARPA Order 368 Task 4, for theoretical computations on light molecules, under Professor

C. C. J. Roothaan and Dr. B. J. Ransil as Principal Investigators, with Professor Mulliken as

Consultant. At its expiration, the contract was renewed for another three-year period, and the work

is continuing with Professor Roothaan as Principal Investigator and Professor Mulliken as Consultant.

The present Technical Report for 1964 is issued jointly under the contracts (ONR, AFESD,

AFOSR, and ARO) which have supported our research during the period 1 January 1946 through

31 December 1964. A few papers supported largely by National Science Foundation grants are also

included, because of their close relation to other work here reported and because of their partial

support by the contracts. Spectroscopic equipment used in the work under the National Science

Foundation Molecular Complexes grant (G-20375) was in part provided by the ONR contract.

For a complete list of papers published from 1 January 1953 up to early 1960 by personnel

of the Laboratory of Molecular Structure and Spectra, reference may be made to the Technical Report

1957-9, Part Two. Papers from this Laboratory published in the period 1947-52 are listed in the ONR

Final Report of 30 September 1956.
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SCF EXCITED STAT-'S AND
TRANSITION PROBABILITIES OF

SOME NEON-LIKE AND ARGON-LIKE IONS

by

Paul S. Bagus

ABSTRACT

Analytic self-consistent field (SCF) wave functions were computed
for the ground states of the closed-shell atomic systems F-, Ne, Na+; and
Cl-, Ar, and K+, and for those ground and excited states of the open-shell
systems that are obtained by removing a single electron from any one of
the occupied shells of these closed-shell systems. Details of the calcula-
tion of the functions are presented with emphasis on a justification of the
procedures used for the calculations for excited states. A high accuracy
is obtained; the calculations for the closed-shell systems give the most
accurate analytic SCF wave functions that have yet been reported. Ioniza-
tion potentials are calculated and compared with experimental values.
Computed ionization potentials for the removal of a Zs electron from Cl-,
Ar, and K+, for which no direct experimental data are available, are esti-
mated to be accurate to within 1%. It is found that the removal of an
electron from the outermost s shell increases the correlation energy, in
contradiction to the predictions of a recently proposed semi-empirical
scheme for estimating the correlation energy. For example, the magnitude
of the correlation energy of the lowest 2S state of Ar+ is -4 eVgreater than
the magnitude of the correlation energy of neutral argon. The effect of the
nonzero off-diagonal Lagrangian multipliers is considered and found to be
important for the inner-shell hole states. The SCF functions have beenused
to computc dipole transition probabilities for photon emission. The tran-
sition probabilities are computed in several different ways to examine the
effects of various approximations. In particular, the results obtained using
length, velocity, and acceleration operators are compared. The calculated
radiation width for the K-state of argon is combined with an experimental
value of the K-fluorescence yield to obtain a value of the total K-state width
in agreement with experiment.

I. INTRODUCTION

In this paper, analytical self-consistent field (SCF) functions are
presented for the ground states of the closed-shell atomic systems F-,
Ne, Na+, Cl-, Ar, and K+, and for those ground and excited states of the



open-shell systems that are obtained by removing a single electron from

any one of the occupied shells of these closed-shell systems. Specifically,

we present SCF functions for the Is 2 2s 2 2p 5 , lsZ2s2p6 , and lss 2 2p 6 con-

figurations of F, Ne+, and Na++, which, for convenience, we refer to as the

2p-hole, 2s-hole, and is-hole states, respectively; and SCF functions for

the 1 sZZs'Zp63 sZ3pS, 1 sZZs2Zp 63s3p 6 , I sZ2s22p53s 2 3p 6 , 1 sz2sZp 6 3s 2 3p 6 , and
Is2s2 2p 6 3s3p6 configurations of C, Ar , and K + + , which we refer to as the

3p-hole state, 3s-hole state, etc. These states are of interest for X-ray

emission and absorption phenomena. They are also useful, for example,

for calculating the effect of the electronic charge distribution on electron

capture by the nucleus.(I)

Several properties of the wave functions have been calculated.

Expectation values of r and r z are given for the SCF orbitals and overlap

integrals between total wave functions not orthogonal by symmetry. In the

final section of this paper, dipole transition matrix elements between the

wave functions are presented.

The SCF wave functions were calculated using the Roothaan

analytic expansion method. This method was developed first for closed-shell

systems and then extended to a large class of open-shell systems. In its

present form, the method will treat a system with any number of open shells,

provided there is at most one open shell for each one-electron symmetr y
species. (2,3,41

Extensive investigations have led to the development of reliable and

accurate numerical techniques to implement the application of the analysis.

These techniques have been incorporated into computer programs, written

for the IBM 704, 7090, and 7094, for the calculation of atomic SCF wave

functions..(4)

Many SCF calculations have been performed, using the Roothaan

analysis, with the goal of obtaining accurate representations of the

Hartree-Fock functions.(5-9) However, these functions have been for

ground or low-lying excited states. The functions presented here are the

first analytic SCF calculations for X-ray excited states of atomic systems.

To our knowledge, the only numerical Hartree-Fock calculations for such

states that correctly take exchange into account are those of Sureau and

Berthier on aluminurn.(I0)
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II. THEORY A

In the Roothaan expansion method, the SCF orbitals Oi >, omitting
spin, are given in terms of basis functions xp, XU by

Oixc = 7p Xp,acix,p* (1)

Here X labels the symmetry species, and a the subspecies; for atoms,
these are usually denoted by I and m. The principal quantum number is
represented by i, and p labels different basis functions of the same sym-
metry. The complete spin-orbital is given by

iXas 7 s' (Za)

where

71s= a , or s= s " (2b)

The set of basis functions used in an expansion SCF wave function is
referred to as the basis set of the function.

The notation used in Eqs. (1) and (2) is that adopted by Roothaan.( 3 ' 4 )

Since only atomic systems are considered in this paper, the standard
notation for atomic orbitals, nim, will be used, hereafter, in place of
Roothaan's more general notation, iXa.

For atomic calculations, the basis functions are given by

Xp,2m(re,) = Rjp(r)Yjm(e o) ,  (3)

where YIm(0,0) are normalized spherical harmonics, and the radial
functions R1p(r) are normalized nodeless Slater-type orbitals (STO's);
namely,

p(r;npCIp) = [(zp)!2] p) np+rnP-e- (4)

The integer n1P is called the principal quantum number of the basis
function, and C, the orbital exponent. Care should be taken not to
confuse the two gifferent uses of "principal quantum number." The
principal quantum number of an orbital is the label that distinguishes
that orbital from other orbitals of the same symmetry species and sub-
species. The principal quantum number of an STO is merely a flexible
parameter of a basis function. For example, in our calculations on
argon, the Is orbital is expanded in terms of Is, 2s, and 3s STO's.

4



The choice of Slater-type orbitals for the radial functions Rep(r) is
physically reasonable, and the computation of necessary integrals between
STO's is simple (at least for atoms). Several expansion SCF calculations
have been made on atomic systems with the goal of obtaining accurate
functions using small basis sets of STO's. The results of these calculations
agree quite well with Hartree-Fock (HF)* functions obtained by direct
numerical integration.(9)

The many-electron wave function is constructed from one Slater
determinant, or a linear combination of a few Slater determinants, of the
occupied SCF orbitals. The combination is made so that the wave function is
an eigenfunction of L2 , S7, L z , and Sz . (Methods for constructing eigenfunctions
of angular momentum from Slat-.r determinants are contained in Refs. 11
and 12.) The wave function is also an eigenfunction of the inversion operator
and has a definite parity. The variational principle is applied to obtain
equations for the coefficients Cnip[ C. in Eq. (1)]. These equations are
then solved without further approximation. In particular, the off-diagonal
Lagrangian multipliers that couple equations for open- and closed-shell
orbitals of the same symmetry are treated properly. (Procedures that
treat the off-diagonal Lagrangian multipliers in an approximate way are
contained in Refs. 13 and 14). It will be demonstrated in the discussion
of the results that neglect of the off-diagonal Lagrangian multipliers
significantly affects the SCF functions of certain excited states.

Equations (1), (2), and (3) place certain restrictions on the form of
the SCF orbitals that should be stated explicitly. Equation (2) requires that
the spin-orbital be factored into a product of a spatial function and a spin
function. Equations (1) and (3) introduce the central field approximation by
requiring that the orbital be factored into a product of a radial function and
a spherical harmonic. A further consequence of Eqs. (1) and (3) is that all
the electrons of a given shell have the same radial function. Thus, Onim
may be written as**

ninm(r,e6,) = Fnj(r)Y1m(,q5), (5)

where

Fnl(r) = 7p Rjp(r)Cni,p. (6)

*The notations SCF and HF will oe used almost interchangeably. When

we wish to distinguish between analytic expansion orbitals as opposed
to exact solutions of the HF equations, we will use the notation SCF
orbitals as opposed to HF orbitals.

**The use of F(r) to represent the radial portion of an orbital is an
unfortunate deviation from the standard notation which is, of course,
R(r). We do this to avoid confusion with the notation for the basis
function Rip (r).

5



These orbitals are symmetry-adapted; i.e., they form bases for irreduci-
ble representations of the symmetry group of the (atomic) Hamiltonian.
(For a discussion of the symmetry problem in the HF scheme, see Ref. 15.)

An additional requirement is that the occupied SCF orbitals form an
orthonormal set,

<Knimlrn'e m '> = 6 nem,n'emI" (7a)

Because the' orbitals are symmetry-adapted, this reduces to the requirement
that

F*I(r)Fn, (r)r4dr = 65n,n' (7b)

In matrix notation, Eq. (7b) becomes

c t S c(7c)
IsnZi -- n'l =  n,n "t (c

where cni is a vector that collects the coefficients Cn, and S, is the
overlap matrix of basis functions of symmetry species

Sepq = f RIp(r)R Iq(r)rz dr. (8)

In the numerical HF procedure, no assumption is made about the
form of the radial function FnI(r) . The variational principle is applied for
arbitrary variations of the radial functions, subject to the constraint that
they form an orthonormal set, and integro-differential equations for the
Fni'S are obtained.(2,3) (Reference 16 presents an excellent review
of numerical Hartree-Fock procedures. Reference 17 discusses the
applications of numerical techniques to high-speed digital computers.)

The solutions of the integro-differential equations satisfy the
cusp condition, (18,19)

[(l/fn) (dfn2 /dr)r__ = - Z/f + 1), (9a)

whe re

F n(r) = rif (r). (9b)

6



The cusp condition may be used as a criterion for the accuracy of an ex-
pansion SCF orbital near the origin. Moreover, an orbital with a poor cusp
value may be a poor representation of an exact HF orbital, nc. only in the
region r-'0, but also over the entire range of the function. The cusp con-
dition is a necessary but not a sufficient condition that the orbital be a so-
lution of the HF equations. A basis set can be chosen so that an expansion
SCF orbital will satisfy the cusp conditions exactly;(8) however, the orbital
may still be a poor approximation of the exact HF orbital.

The total Hamiltonian operator 5 for an atomic system may be
written, in atomic units, as

= + 00, (Ia)

where

2 (1 ),(Ob)
and

=Y _ i (Z/ri) + Zi<j(l/rij).

This Hamiltonian is valid for a system with nonrelativistic Coulomb
interactions and an infinitely heavy nucleus.

If T is an exact eigenfunction of SV for any bound state, then the
virial theorem,

< -= , (11)

is satisfied. If T is an approximate eigenfunction which contains a
variable scale factor k such that T(xI ..... xn) = '(kxl, ... , kxn and
k has been chosen to satisfy (6/6 k) (< T'I-,j'>/< T'I'">'  0, then

this approximate T also satisfies Eq. (I ).(2 0 )

Exact HF functions satisfy the virial theorem since arbitrary
variation of the radial part of the orbitals includes, implicitly, variation
of a scale factor. Expansion SCF functions for an arbitrary basis set
will not, in general, satisfy the virial theorem. If, however, variation of
the exponents, as well as the linear coefficients, is performed, the virial
theorem will be satisfied when all parameters have been optimized.
Hence, for expansion SCF functions, the virial theorem is a necessary,
but by no means sufficient, condition that an optimum basis set (in the sense
of satisfying variational equations) has been used.

7



Let {T(a)} be a set of trial functions, where the index a distinguishes
different members of the set from which we wish to choose an approximate
wave function for some state of a system. The index a may represent a
set of variable parameters, any one of which may be discrete or continuous.
Let T(A) be chosen from the set {l(a)} as the solution of equations determined
from application of the variational principle; i.e., T(A) satisfies

6<Ta VJa><aJ a) = 0. (12)

If T(A) is an approximate wave function for the ground state of.the system
or for the lowest excited state of a symmetry (if the trial functions T(a) are
symmetry-adapted), then T (A) is the best function possible for the restricted
form of the trial functions - best in the sense that the expectation value of
the energy for T'(A), <T(A)J]SVT(A)> = E(A), is more nearly equal to the
true energy eigenvalue E(t) than the expectation value of the energy for any
of the other trial functions (a). Moreover, E(A) 2t E(t), and, if E(A) = E(t),.
then T(A) is the true eigenfunction.(Z0,21)

This is not true for excited states that are not the lowest states of
a symmetry unless the trial functions {T(a)} are constrained to be orthogonal
to the exact eigenfunctions of all states of lower energy. The imposition of
this constraint is, of course, not possible in general since the exact
eigenfunctions of the lower states are not known. One procedure would be to
require trial functions for excited states to be orthogonal to approximate
wave functions for lower states. In the calculation of excited-state SCF
functions, this is not done; no explicit requirement of orthogonality to
lower SCF states is made. (8)

We rely on the physical model of the choice of the form of the
SCF excited-state wave function to guarantee near-orthogonality to the
SCF wave functions for lower-lying states. This physical model is,
of course, the orbital or shell structure of the atom. Indeed, the only
constraint that is imposed to obtain an excited-state, rather than a
ground-state, wave function is the specification of the electronic con-
figuration. For a Is-hole state, for example, the HF operators are
constructed on the assumption that the Is orbital is occupied by only one
electron. Eigenvectors of the HF operators are obtained and iterations
are performed in the usual way until the condition of self-consistency is
met; but the assumption that the 1s orbital is singly occupied is maintained
throughout the process. The singly occupied Is orbital is chosen at each
iteration to be the eigenvector (of the appropriate HF operator) with the
lowest orbital energy. This choice is easily justified by the fact that the
orbital so chosen is the occupied orbital that is most similar to a hydro-
genic 1s orbital.

The HF operators are functions of the electron density. The electron
density of a complex atom does not change drastically in going from ground to
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excited states. Thus, the HF operators for ground and excited states are not
drastically different, and SCF wave functions for excited states are very
nearly orthogonal to SCF wave functions for lower states. The 3s-hole
state of argon is the lowest ZS state of Ar+; the Is-hole state, a very highly
excited ZS state, lies about 3000 eV above the 3s-hole state. Even for this
extreme case, the overlap integral between the many-electron SCF wave
functions for these two states, < 'I F (ls-hole)I SCF (3s-hole)>, is
.5 x 10-4 . The requirement that theFs-hole SCF wave function be orthogonal
to the 3s-hole SCF wave function would produce only a very small change
in the is-hole wave function. Further, since the 3s-hole SCF wave function
is only an approximate eigenfunction, we do not know whether the constraint
of orthogonality would improve or worsen the Is-hole wave function.
Overlap integrals between many-electron SCF wave functions for all those
states, presented in this paper, that are not orthogonal by symmetry are
given in Table XV. [M. Cohen and A. Daglarno (?z and D. Layzer(23)
have investigated the overlap of SCF excited states of the same symmetry
using expansions of SCF wave functions in powers of 1/Z and find that
the overlap is zero to order (I/Z)2 .]

For a certain class of excited-state SCF wave functions, it is
possible to state easily tested conditions that must be fulfilled in order
that the SCF energy be an upper bound to the true energy of the state. 2 4)



III. DETAILS OF THE CALCULATION OF
THE SCF WAVE FUNCTIONS

To obtain analytic SCF orbitals that are good approximations to the
exact orbitals, it is necessary to use a basis set that very nearly spans the
true HF manifold. It is perhaps possible to do this by using large, more or
less arbitrarily chosen, basis sets, but if this is done, several difficulties
arise. Numerical processes that work well for basis sets of reasonable
size become troublesome, and round-off error becomes important when
large basis sets are used. Long expansions of atomic functions are poor
starting points for molecular and solid-state calculations, while short ex-
pansions have proved to be excellent starting points for molecular SCF
calculations.(25) By using large basis sets, one loses much of the advan-
tage of simplicity that the analytic representation of SCF functions has over
numerical tables of orbitals. For large atomic systems, the finite size of
the computer becomes an important limiting factor on the size of the basis
set.

For these reasons, we have used basis sets of limited size, making
a careful choice of the exponents and principal quantum numbers of the
STO's in order to minimize the total .SCF energy. Particular emphasis is
placed on varying the exponents to find optimum values. This variation is
performed automatically by the computer program. (4) Our method of ex-
ponent variation is to perform several complete SCF calculations for dif-

ferent values of the exponents and to interpolate between these values.

While we do not explicitly solve variational equations for the expo-
nents with this method, we do obtain a stationary value of the expectation
value of the energy with respect to the exponents. The particular station-
ary value that we obtain is a minimum. Explicit variational equations for
the exponents as well as the linear coefficients Cnip have been given by
Dehn.(26) The equations for the exponents appear to be difficult to solve.
One important problem is that the basis functions used to represent an
SCF orbital (to a given accuracy) are by no means uniquely deter-
mined.(27,28) Our brute-force variation of the exponents has proved to
be a quite satisfactory procedure.

When basis sets of limited size are used, it is important to build
up the basis set systematically to the final, accurate set. The initial cal-
culation for a state should be made with a rather small basis set. This
set can give only a crude approximation to the exact HF wave function,
but for a small set it is easy to find the optimum values of the principle
quantum numbers and exponents. This gives a first or base reference
point for more accurate calculations on the state. Additional exponents
are then introduced, usually one at a time, and the exponents reopti-
mized. It is not sufficient to optimize 6 nly the exponents of the new basis
functions; the exponents of old functions must also be adjusted when a new
function is added. In this way, it is possible to gauge the "need" for the
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new basis function, and to make an educated guess about the "need" for an
additional basis function. The intermediate sets, formed in this build-up
process, are often useful in themselves.

Because of the many SCF calculations involved in the optimization
of the basis set, the experience gained in the calculation of one state must
be applied to the calculation of similar states of the same or neighboring
atoms. Linear extrapolations and interpolations of the exponents for
states already computed provide good approximations to the optimized
exponents of a nearby state. This is particularly true for smaller basis
sets, since for these sets the optimum values of the exponents are
well-defined. For larger basis sets, where several different sets of
values of the exponents will give functions with the same total energy, the
interpolated and extrapolated values provide a good starting point for
exponent variations that lead to the optimized values.

Thus the calculation of the functions of a series of states must be
done systematically, and the function for each state must not be computed
as a separate problem. This systematic procedure will also uncover
errors in optimization of basis sets. If an extrapolation or interpolation
to a neighboring state fails to work well, one has excellent reason to
suspect an error in one of the previously computed states. While the
calculation of the SCF wave function for a single state is laborious and
time-consuming, the calculation of wave functions for a series of states
is fairly economical.

It will be useful, for the following discussion, to introduce the notion
of a loop of an orbital. A hydrogenic radial function with quantum numbers
n2 has n - £ -1 nodes and n - £ loops between these nodes and the points
r = 0 and r -. Similarly, the HF radial function F n (r) generally has
n - I - 1 nodes and n - 2 loops. The contributions to the HF operator of
exchange terms and off-diagonal Lagrangian multipliers will introduce,
in exceptional cases, extra nodes and loops near the tail of the orbital;*
but the function is very small in these loops, and for this discussion they
may be ignored. For, HF orbitals of a particular state of a system, the
Is orbital and the inner loops of the 2s and 3s orbitals, in a rough sense,
occupy the same region of space. Similarly, the outer loop of the 2s orbital
and the middle loop of the 3s orbital occupy the same region of space.
Thus, for a given state of a system, the nth loops of HF orbitals of the same
symmetry roughly define a distinct range of values of r. The range is
rather well-defined, except for an outer loop. The outer loop of an orbital
always has a long "tail" going slowly to zero. This division of r into
distinct ranges permits us to consider groups of basis functions, where
each group is chosen to fit a particular loop.

*See Ref. 29 and the discussion in Section IV-E of this paper.
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The computer program used for the SCF calculations has facilities
for the coupled variation of the exponents of one, two, or three basis func-
tions. The choice of the exponents to be varied, if any, is part of the input
data to a run.

When the exponent of one basis function is varied, the program per-
forms complete SCF calculations for different values of the exponent being
varied while all the other exponents are held fixed. An energy minimum is
found and bracketed by calculations for five values of the exponent at inter-
vals of .A . The optimum value of the exponent is determined by interpo-
lation; a quartic is fit to these five points and its minimum is obtained.
The exponent variation increment, .A, is a flexible input parameter.

Care must be taken in the choice of AC so that the interpolation may
be accurate. If A is chosen too small, the differences of the calculated
SCF energies will be small and the interpolation will be in error because of
the round-off errors in the SCF energies. Thisis not too serious since the
optimum value of the exponent is indeterminatebecause of this round-off
error in the SCF energies; however, fairly large amounts of computer time
may be wasted by trying to bracket the energy minimum too closely. More-
over, if the energy differences are small enough, a true energy minimum
may be missed because the round-off in the SCF energies causes an appar-
ent, but false, minimum. Since, for calculations of the size presented here,
the round-off error in the SCF energy appears to be a few units in the
eighth significant figure, we tried to choose AC so that the SGF energy
changed by at least a few units in the seventh significant figure between
adjacent SCF calculations.

If A is chosen too large, the interpolation will be in error because
the points (in exponent space) at which SCF calculations are made are too
far apart to be fit meaningfully by a quartic. The usual symptom of this is
large changes in the SCF vector coefficients CnA between adjacent points.
These changes indicate that the basis function is being "used" in the SCF
orbitals in qualitatively different ways for different values of the exponent.
The best, simple way to test whether A C has been chosen too large is to
compare the interpolated value of the total energy with the energy obtained
from an SCF calculation using the interpolated value of the exponent. This
SCF calculation is automatically performed by the program.

The quartic interpolation scheme is sufficiently accurate so that,
for a properly chosen AC, the predicted and computed values of the energy
will agree within round-off error. The range of acceptable values of AC
is, in fact, quite large, and only in exceptional cases must A C be given to
more than one or one and one-half significant figures.

The procedures for the coupled variation of two and three exponents
are an extension of those described above for the variation of a single
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exponent. However, while a one-dimensional variation requires at least
five SCF calculations, a two-dimensional variation requires at least Z5
SCF calculations, and a three-dimensional variation requires at least 125.

Multidimensional variations should couple the exponents of basis

functions used to represent a loop of the orbitals. They should not couple
the exponents of basis functions used to represent different loops. A
multidimensional variation will usually give better values for the exponents
than a series of one-dimensional variations since a larger region of
exponent space is examined in a multidimensional variation. However, a
multidimensional variation may use more computer time than a series of
one-dimensional variations. The exponent variation procedures are
described in detail elsewhere.(4)

The principal quantum numbers of the STO's of a basis set can be
chosen in a special way so that the cusp condition of Eq. (9) is automatically
satisfied for all the SCF orbitals.(8) We call a basis set of STO's whose
principal quantum numbers have been chosen in this special way a fixed-cusp
set. Extensive experience, especially for first-row atoms,(9) but also for
some second-row atoms,(30) has shown that if fixed-cusp sets are not
used it is possible to obtain accurate SCF orbitals with adequate cusp
values using smaller basis sets. Often the best energies obtained using
these free-cusp sets were lower than the best energies obtained using
the larger fixed-cusp sets. For this reason, we choose to use free-cusp
sets.

Whereas the exponents, being continuous parameters, were optimized
by continuous variation, the principal quantum numbers of the basis func-
tions, being integers, need to be chosen more or less arbitrarily. Our pref-
erence was to choose principal quantum numbers for the STO's that are
to represent the nth loop of a series of orbitals so that the STO's would
have the same power of r as hydrogenic functions representing that loop
have. Thus, for the states of the fluorine, neon, and sodium ions, we
used Zp STO's to represent the 2p orbital; and for the states of the chlorine,
argon, and potassium ions, we used 3s STO's to represent the outer loop of
the 3s orbital.

This was by no means a hard and fast rule; we did limited experi-
mentation with other values. The need for experimentation was usually
indicated by one of the following three factors:

1. The failure of the automatic exponent variation procedures of
our computer programs to operate efficiently. The program would vary
the exponents so as to cause the basis set to become nearly redundant;
that is, the basis functions at some stage of the exponent variation process
would form a nearly linearly dependent set.*

* A precise measure of the redundancy of a basis set is the value of the determinant of the overlap

matrix S of the basis functions. As the determinant of S goes to zero, the basis set goes to complete

redundancy (exact linear dependence).
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2. The failure of a subset of the full basis set to adequately repre,
sent a loop. This is indicated when a basis function that is important in a
region of space outside the loop does not have a small coefficient when it
contributes to the representation of the lo( -. Consider the Is orbital of

neutral argon, for example. For the accurate SCF function (see Table IlI),
the principal quantum numbers of the basis functions that represent the
inner s-loop are 1, 2, and 3. The coefficients of these functions for the
Is orbital are large, and the Is coefficients Cls,p of the remainder of the
s basis functions are of the order of 1 x 10 - 4 . We tried to obtain an SCF
function of the same accuracy using two Is and one 3s basis functions to
represent the inner s-loop. In this case, the Is coefficients of the remain-
der of the s basis functions were as large as 2 x 10 - 7.

3. The desirability of keeping the basis set as nearly linearly
independent as possible. For the states of the chlorine, argon, and potas-
sium ions, we believe that we have a less redundant basis set if we use
three 2p and one 4p basis functions to represent the inner p-loop, than
if we were to use four 2p basis functions. This consideration is important
only when we come to the final, largest basis sets used to obtain the most
accurate SCF wave functions.

The minimization of the total SCF energy ESCF was the fundamental
criterion used to choose the basis sets for the SCF functions reported here.
The analytic SCF orbitals determined by using this criterion are not uni-
formly good approximations to the exact HF orbitals. The orbitals of the
electrons that contribute most to ESCF, the core or inner-shell electrons,
are determined most accurately. The orbitals of the electrons which con-
tribute least to ESCF, the valence or outer-shell electrons, are determined
least accurately.

Because of the limitations of the computer, the total energy is only
computed to eight significant figures. The contribution of the outer shells
to ESCF is masked by the large contributions of the core, A rough mea-

sure of the contribution of an electron in the ni-shell to ESCF is the
orbital e.:ergy Cni. For neutral argon, we have the values ESCF = -526.817,

,s = -119.610, and 63s = -1.277; the unit of energy is the Hartree (iHar-
tree = 27.2098 eV). Thus, when exponent variations are performed on the
inner s-loop basis functions, there are effectively two more significant
figures in ESCF to examine than when exponent variations are performed
on the outer s-loop basis functions. To produce equal changes in ESCF,

larger changes must be made in the exponents (and therefore in the orbitals)
of the basis functions used to represent outer loops than in the exponents
of the basis functions used to represent inner loops.

Because it is more difficult to obtain accurate orbitals for the 3s

and 3p shells than for the inner shells, we paid close attention to small
changes in the total SCF energy when choosing the basis functions used to
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represent the outer loops of the 3s and 3p orbitals of the states of the
chlorine, argon, and potassium ions. Small improvements in the total
energy obtained in fitting these loops are at least as important for the
general quality of the wave function as are larger improvements obtained
when fitting the inner-shell orbitals.

It was also necessary to look for small energy improvements,
when the most accurate functions were computed, so that the tails of the
orbitals would be fit properly. The tails of the orbitals make the smallest
contribution to the total energy. Thus, small expansion sets fit the orbitals
in the regions where they are large at the expense of the behavior of their
tails, and larger basis sets must be chosen carefully so that the tails will
be represented properly.

The calculations reported here were performed with computer
programs written for the IBM 704 and 7090/4 by Professor C. C. J. Roothaan
and the author, with the assistance of various members of the Laboratory
of Molecular Structure and Spectra at The University of Chicago. The pro-
grams are available for distribution upon request.
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IV. RESULTS AND DISCUSSION OF SCF CALCULATIONS

A. The SCF Wave Functions

Tables I-IV present the most accurate .SCF function computed for
each state. Tables V-VIII present a simpler, less accurate, but quite
useful SCF function for eich state. The simple basis sets were obtained
with relatively little computational effort. They are a good starting point
for extending these calculations to other states of interest (for example,
to states formed in X-ray absorption). In addition, the simple basis set
functions are sufficiently accurate for many purposes. Expectation values
of r and r z , dipole-transition matrix elements, and overlap of SCF wave
functions were computed with the simple set SCF functions as well as the
accurate set SCF functions. The values obtained usually agree quite well.
Some comparisons that indicate the extent of the agreement will be given
later.

The results in Tables I-VIII include the total energy for the non-
relativistic, electrostatic, fixed-nucleus Hamiltonian of Eq. (10) and the
virial coefficient V/T. Exponents of the basis functions are given for
each state. The principal quantum number and symmetry type of each
basis function are given in parentheses in the first column of each table.
The different basis functions are numbered consecutively within each
symmetry type. For each orbital, the SCF orbital energy Eni, the
cusp [defined in Eq. (9)], and the vector coefficients Cn ,p are given.
The numbering of the vector coefficients corresponds to the numbering
of the basis functions. All energies are given in Hartrees. The results
reported in Tables I-VIII are from calculations performed on an IBM 7094.

The total wave functions for the states given in Tables I-VIII are
all single determinants. The 'S and ?S states have even parity, and the
ZP states have odd parity. The parity follows immediately from the

electron configurations of the states.

The ls-hole states of F-, Ne, and Na+, and the ls-, Zs-, and
2p-hole states of Cl-, Ar, and K+ are not the lowest states of their
symmetry species; these states are marked with asterisks in Tables I-VIII.

The Zs-hole states of Ne and Na+, and the 3s-hole states of Ar
and K+ are the first excited states of Ne+, Na++, Ar+, and K++, respec-
tively. They are the lowest ZS states.

The Zs-hole state of F- is a highly excited state of fluorine; it is,
in fact, past the ionization limit. However, Moore(31) does not give any
other ZS state of even parity in the spectrum of fluorine. The 3s-hole
state of C1- is not observed but no ZS states of even parity are observed
in the spectrum of chlorine.(31) Thus these states may be the lowest states
of their syrnetry species.
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TABLE U. SCF Orbitals ant E.rogies for Cl" .d ni-hole States of C1, Accurate Basin sets

C.-(03) C1(2y) 01(23) CI(2p) a 2 a) c1(2s)a
3p-hole 3e-hole 2p-hole 2-hole 1I-hole

5 -459.5768 -459.4820 -458.9167 -452.3349 -449.7655 .356.2822

V/T -1.999999 -2.000000 -2.000001 -2.000001 -2.000001 -2.000004

C1(16) 19.955 19,840 19.830 19.955 19.955 20.000

c2(25) 14.545 14.65o 14.670 14.530 14.505 16.500

C3(3) 16.000 16,000 16.000 16.000 16.000 18.000
4(3

1
) 9.951 9.940 9.932 9.684 9.954 10.166

C5(2s) 5.748 5.7-45 5.743 5.867 6.010 6.062

16)( 2.823 2.904 2.878 3.140 3.030 3.167
C7(3

s
) 1.651 1.826 1.842 1.970 1.923 1.982

c1(2P) 15.380 15.440 15.525 16.345 16.600 16.900

C2(2p) 7.535 7.550 7.555 7.790 7.845 8.310
3 (2p) 4.385 4.415 4.405 4.600 4.615 4.980

C4(4p) 7.200 7.200 7.200 7.700 7.700 8.000
C5(3P) 2.612 2.663 2.653 2.852 2.861 2.926
6(p) 1.826 1.976 1.932 2.091 2.100 2.136

C7(3P) 0.920 1.236 1.191 1.307 1.310 1.311

,is -104.50546 -104.88431 -104.95559 -106.27042 -106.04136 -112.50264

Cusp -17.00483 -17.00224 -17.00306 -17.00187 -17.00641 -17.00392

Clll 0.76554 0.77219 0.77275 0.76588 0.76542 0.77416
c1,2 0.43218 0.40836 0.40543 0.43389 0.43475 0.32382
C0 .3 -0.16990 .0.15323 -0.15094 -0.17190 -0.17195 -0.07287

015,4 0.00060 0.00227 0.00272 -0.00055 -0.00072 0.00487

Cs,5 0.00005 -0.0o060 -0.00082 0.00041 .0.00107 0.01344
0

1s,6 0.00003 0.00013 0.00015 -0.00006 -0.00006 -0.00217
015.7 -0.00004 -0.00009 -0.00011 -0.00001 :000000 -0.00191

12S -10.22916 -10.60741 -10.66547 -11.32032 -11.47391 -11.83135
Cusp -16.99333 -16.99389 -16.99236 -.16.98104 -17.02706 -16.94919

028 1 -0.21448 -0.21639 -0.21622 -0.21855 -0.21801 -0.23204
C28.2 -0.21001 -0.20133 -0.20016 -0.21460 -0.22715 -0.17324
C21.53 0.07593 0.06997 0.06934 0.08022 0.07179 0.02477

C2s8.4 0.17263 0.17368 0.17136 0.20563 0.13283 0.17350
C28,5 0.90099 0.89900 0.90007 0.86777 0.94252 0.90538
C2:,6 0.00586 0.00558 0.00719 0.00543 0.02443 0.00693
02,.7 -0.00023 -0.00015 O.00006 0.00042 0.00979 -0.00024

C38 -0-73320 -1.07288 -1.17570 -1.22317 -1.20787 -1.23087
Cusp -16.96224 -16.94416 -16.94540 -16.97671 -17.00251 -16.98601

C30,1 0.06317 0.06541 0.06693 0.07000 O. 07341 0.07252

c3s .2 0.07620 0.07656 0.07TTO 0.09087 0.09926 0.07018
c3 . 3  -0.02132 -0.02034 -0.02053 -0.02158 -0.02157 -0.00184
C30 4 -0.00604 -0.00017 -0.00059 0.01419 0.03314 0.02248
C30,5 -0.40771 -0.42851 -o.43667 -0.49099 -0.52027 -0.48357
c3*,6 0.70755 0.65176 0.68652 0.64384 0.67449 0.64311
038,7 0.43093 0.48089 0.44414 0.51051 0.46565 0.5031

02p -7.69557 -8.07218 -8.14619 -9.00679 -8.78960 -9.55946
Cusp -8.44006 -8.43660 -8.44048 -8.44624 -8.47497 -8.51969

C2p,1 0.01990 0.01930 0.01875 0.01324 0.01236 0.00767
C2p.2 0o.68564 0.68305 0.68657 0.66057 0.65222 0.63922
c2p,3 0.19201 0.19262 0.187o7 0.22510 0.23727 0.24850
02,, 0.16481 0.16636 0.17024 0.14711 0.15609 0.15979
C29 5 0.00296 0.00516 0.00323 0.01950 0.00104 0.00535

C2p,6 -0.00058 -0.00107 -0.00129 0.01128 0.00016 -0.00209

02p,7 0.00024 0.00111 0.00063 0.00531 0.00000 0.00100

It -0.15017 -0.50640 -0.50063 -0.58967 -0.58&45 -0.59605
cup -8.38032 -8.3599 -8.35630 -8"38535 -8.37179 -8-40151

3P ,1 -0.00350 -0.00346 -0.00331 -0.00274 -0.00199 -0.00022
c3p,2 -0.18172 -0.19968 -0.20013 -0.22358 -0.20251 -0.19667
c3P,3 -0.03172 -0.02837 -0.02733 -0.05978 -0.05454 -0.04580
03p,4 -0.06118 -0.07143 -0.07165 -0.07294 -0.07260 -0.07359
C3P,5 0.59454 0.60295 0.62287 0.63710 0.63463 0.63024
03p,6 0.36833 0.31482 0.33734 o.32628 0.32834 0.33878
c3P 7 0.21232 0.21687 0.17781 0.1806o 0.18278 0.17251

'States which ere not the lowset of a sywtry species.
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TABLE LU. 5CY Orbita. &.d Es:erg. gor Aram " iS.b . State. of ArSOM. Acm4ts B ss Set.

A,(ls) Ar (2p) ,, +2) A,,( 2 p), Ar (2s)o Al,+(23)0
3p-hols 3.-bole 2p-hole 2s-hole Is-bole

-526.8175 -526.2745 -525.5977 -517.6690 -514.87&9 -409.3890
V/T -2.000000 -1.999 -1.99999 -1.999999 -2.000001 -2.000000

c1(15) 20.750 20.750 20.735 20.700 20.615 20.080

C2(20) 14.900 14.900 14.900 14.945 15.000 16.845
C3(3) 16.500 16.500 16.500 16.5oo 16.500 18.50c)
40(3) 10.500 10.584 10.758 10.628 10.543 10.863
C5(28) 6.206 6.224 6.253 6.451 6.498 6.544
60(30) 3.166 3.259 3.232 3.458 3.382 3.532
7(30

)  
1.993 2.185 2.201 2.311 2.278 2.340

Cl(2p) 16.220 16.16o 16.195 17.020 17.46o 17.720

C2(2p) 8.230 8.180 8.200 8.410 8.500 9.055
83(2p) 5.000 4.795 4.865 5.000 5.115 5.450
C4(4p) 8.000 8.000 8.000 8.500 8.500 8.900
C50() 2.970 2.955 2.976 3.157 3.159 3.214
C6(P)  2.211 2.209 2.242 2.359 2.358 2.385
C7(3P) 1.370 1.550 1.550 1.620 1.620 1.650

,1 -118.61014 -119.13309 -119.19462 -120.65776 -120.39576 -127.27956
camp -18.00366 -18.00349 -18.0027 -18.00005 -18.00218 -18.00163

Ols'l 0.7875 0.78752 0.78834 0.79073 0.79512 0.83865
C18, 2  0.41319 0.41322 0.41103 0.40339 0.38653 0.23199
Cl0,3 -0 17634 -0.17640 -0.17492 -0.17014 -0.15765 -0.594
01.c 4 -0.00008 -0.00004 -0.00022 0.0002T 0.00121 0.00265
01815 -0.00011 -0.00016 -0.00006 -0.00047 -0.00020 0.01419
01C,6 0.00007 0.00011 0.00006 0.00009 0.00011 -0.00213
018,7 -0.00006 -0.00008 -0.00008 -0.00008 -0.00008 -0.00203

628 -12.32193 -12.83568 -12.88311 -13.61576 -13.77370 -14.17473
025p -17.99649 -18.00356 -18.01242 -18.01453 -18.0294 -17.95176

026.1 -0.22353 -0.22365 -0.22356 -0.22847 -0.22912 -0.25356
028,2 -0.21917 -0.22087 -0.22339 -0.23284 -0.22911 -0.15950
C2s,3 0.08753 0.08586 0.08258 0.0807 0.07458 0.02281
02s,4 0.16903 0.16072 0.14166 0.13434 0.11753 0.15781
02@,5 0.90732 0.91795 6. 9 3996 0.95521 0.96271 0.9791
028,6 0.00708 0.00704 0.00956 0.00977 0.02490 0.00833
025,7 -0.00043 -0.00048 -0.00049 -0.000S5 0.00965 -0.00047

a34 -1.27725 -1.71114 -1.81793 -1.828 -1.87409 -1.90809
COuP -17.96890 -17.94414 -17.92541 -17.9576 -18.00103 -17.96324

03s, 1 0.06982 o.07189 0.o7327 0.07702 0.08M 0.08360
039.2 0.08792 0.09287 0.09574 0.10727 0.11101 0.07415
034,3 -0.02628 -0.02782 -0.02893 -0.02530 -0.02355 -0.00188
03,4 0.00341 0.01304 0.01863 0.04101 0.05414 0.03755
035.5 -0.45394 -0.48178 -0.49483 -0.55249 -0.58015 -0.53655
030,6 0.66908 0.60576 0.63355 0.6042 0.62943 0.59459
039,7 0.46963 0.53030 0.50096 0.54305 0.51521 0.55658

42P -9.57127 -10.08324 -10.14966 -11.10837 -i0.86T46 -11.71786
cusp -8.92591 -8.91125 -8.91441 -8.9308 -8.96769 -8.9739

02p,1 0.01876 0.01845 0.01832 0.01284 0.01174 0.00"70
02p,2 0.63009 o.6600 0.6,27i 0.64006 0.61717 0.59627
o0, 0.27M07 0.23154 0.24110 0.25810 0.29030 0.3005
c0P.4 0.13o49 0.14871 0.14644 0.13301 0.13460 0.14165
C2P,5 0.00309 0.00096 0.0M 0.01590 -0.00093 0.00252
c0p,6 -0.00058 0.00171 0.00061 0.01386 0.00165 -0.00075
02P,7 0.00028 -0.00037 -0.00031 0.00155 -0.00088 0.00047

a 30 -0.590 -1.0"32 -1.03104 -1.1588 -1.1533 -1.17532
08.8, -80 9 -8.8838 -8.86396 -S.87 -8.89853 -8.93455

c3,1 -0.00346 -0.00391 -0.00345 -0.00290 -0.00204 0.00005
03,2 -0.18973 -0.20843 -0.21009 -0.22"91 -o.20638 -0.19549
0 3O -0.06049 -0.06140 -0.05246 -0.06803 -0.05949 -0.08377
c32,4 -0.06178 -0.06560 -0.07057 -0.06915 -0.06887 -0.06T53
031:5 0.60487 o.6679o 0.65321 0.68195 0.8125 0.6807"
c3P.6 0.308 0.33443 0.32329 0.33574 0.339e3 0.33549
03,. 0.22836 0.12476 0.14900 0.11967 o.1n60 0.11520

States ubdlb ahe ot the lowest of a spenostr peoe..
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TABLE IV. SCF Obital& onW Eo"Wilts for K+ aboal.6.hosaest of K, Accurate Basis sets

K+13 K+(?) *+') ec
4 4

iip K-
4
(
2
3yp X4++28)s

39-hol. 3s-hal. 29-halft 2a-hol, 111-hals

1 -599.0175 -597.8915 -597.1039 -581.6833 -584.6720 -466.4285
7/9 -1.999999 -2.000000 -1.999999 -2.000000 -2.000002 -999997

C1 48a) 21.530 21.545 21.685 21.480 21-300 20.400
C2(2s) 15.255 15.220 15.095 15.300 15.400 17.200
C3308) 17.000 17.000 17.000 17.000 17.000 19.000
C409s) 11.085 11.258 11.323 10.957 11.262 11.560
C'(26) 6.687' 6.724 6.711 6.878 7.010 7.025
COO3 3.502 3.520 3.599 3MOT 3.660 3.814
C7(3s) 2.338 2.691 2.573 2.658 2.600 2.662

cl(2p) 1T.000 17.000 17.020 17-800 18.60 20.000
C2 (2p) 8.890 8.820 8.855 9.075 9.210 9.90
C3 (2p) 5.650 5.260 5.315 5.610 5.712 6.X00
tk(6p) 8.800 8.800 8.800 9.300 9.300 9.800
C0p) 3.253 3.358 3.371 3.562 3.563 3.56
COP)69 2.412 . . . . . . . . . . . . 2.726
C03) 1.650 2.182 2.173 2.296 2.295 2.000

ale -133.75212 -134.60390 -136.65519 -136.06387 -135.76859 -143.07622
Cusp -19.00076 -19.00027 -19.00610 -18.99686 -18,99330 -19.00586

C1 3 1l 0.8S888 0.808in 0.80027 0.81209 0.82283 0.8880
C02 0.389M 0.39610 0.42366 0.37902 0.36675 0.15967

01,.3 -0.17686 -0.18025 -0.20056 -0.17085 -0.16763 -0.03669
C1S,6 -0.00081 -0.00177 -0.00639 -0.00063 -0.00018 0.00269

C85 -0.00024 0.00010 0.0007,6 -0.00055 0.00067 0.01358
010,6 0.00011 0.00008 0.00001 0.00013 ..0.00003 -0.00199
C1 0 ,7  -0.00009 -0.00008 -0.00007 -0.0o0on -0.00002 -0.0o2o8

426 -16.70798 -15.33970 -15.37648 -16.1376 -16.36603 -16.79208
Cusp -19.00163 -19.00951 -19.017412 -19.00269 -19.031l62 .18.95750

C20.1  -0.23231 -0.2324 -0.22961 -0.23712 -0.23933 -0.27074
C2 8 ,2  -0.22932 -0.23568 -0.26566 -0.23674 -0.23878 -0.15189
C2 s, 3  0.09750 0.09623 0.1026T 0.09686 0.0r919 0.02290
C20 4 0.15706 0.160ow 0.162M 0. 156114 0.09227 0.14W5
C28:5  0.92363 0.965n1 0.96623 0-930?7 0.99761 0.94826
C28 6 0.00901 0.00"53 0-01023 0.01075 0.08701 0.00953

C 67 -0.00103 -0.00166 -0.00050 -0.00133 0.0077 -0.00100

a 0 -1.96377 -2.67787 -2.5888 -8.68728 -2.665M8 -2.71203
Cusp -18.9766 -18.95978 -18.92907 -19.01150 -19.00299 -18.96578

0 38.1 0.071669 0.o7862 0.07906 0.00360 0.08803 0.09366
C32 0.10123 0.10710 0.11652 0.11897 0.12446 0.078%6
C 3s3 -0.05137 -0.03363 -0.03861 -0.02901 -0.02732 -0.0085
0 30. 0.061 0.02255 0.02791 0.06360 0.06713 0.06315
C3 ,5 -0.50319 -0.52525 -0.56237 -0.59121 -0.62553 -0.57324
C 3 ,, 6  0.63772 0.62378 0.57022 0.57719 0.62575 0.58976
C s0 0.50386 0. 5100 0.57165 0.58011 0.52008 0. 5628

2P -11.73810 -12.3W83 -12.62720 -13.48122 -13.21615 -16.16872
cusp -9.40153 -9.60961 -9.39869 -9.42043 -9.658" -9.67036

0291I 0.01736 0.0176- 0.01681 0.01262 0.01056 0.00253
029.2 0.60440 0.63378 0.62810 0. 5957 0.57059 0.52905
0 2P.3 0.30" 0.27199 0.27634 0.31579 0.35M2 0. 39166
029.6 0.12274 0.13211 0.1.31435 0.11239 0.1.1667 0.12190
C2 9 ,5  0.00167 -0.00169 -0.00177 0.01286 0.0002 0.00633
02p,6 0.00039 . . . . . . . . .. . -0.001101
0297T -0.00023 0,00228 0.00m?7 0.0176, .0 0.0t129

"1 -1.17067 -1.71131 -1.6888 -1.85275 -1.8608 -1.88069
Cusp -9.60818 -9.61311 -9.3963? -9.43036 -9.62898 -9.41764

C3 9 1I -0.00387 -0.00606 -0.00376 -0.00323 -0.00207 0.00057
0 3P,2 -0.19057 -0.21305 -0.21027 -0.22120 -0.19866 -0.18219
C3, -0.09892 -0.09160 -0.09122 -0.13117 -0.12730 -0.1287

039,6 -0.05612 -0.06176 -0.06274 -0.06006 -0.06202 -0.06243
031),5 0.67017 o.52926 0.52899 0.56360 0.54095 0.69616
039,6 0. 36285 . . . . . . . . . . . . . . . . 0.32599
039,7 0.12328 0.57550 0.57691 0.57136 0.57396 0.10617

-states iff10 am~ not6 the lowet or a ovemtr sopIt.
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TABLE VI. SCF Orbital* and Energies for C1' and ni-hols States of C1-, Simple Davs Sets

cc1lS 2 1 C(2S I l l

x -459.5736 -459.4801 -458.9148 -452.3332 -449.7638 -356.2814

/ -2.000000 -1.999993 -2.000007 -1.999991 -2.000000 -1.999988

c 1 (ls) 18.575 18.674 18.629 18.474 18.095 17.749

t2 (2s) 16.329 16.439 16.385 16.245 15.621 16.424

C3 (38) 10.217 10.190 10.219 10.,021 10.386 10.381

44(28) 5.798 5.785 5.795 5.895 6.062 6.082

C500) 2.823 2.904 2.878 3.140 3.030 3.167

C6 00e) 1.651 .1.826 1.842 1.970 1.923 1.982

C 1 (2p) 10.203 10.268 10.2T5 10.586 10.594 10.460

cC22) 5.585 5.608 5.610 5.884 5.841 6.002

C 3 (3DO 2.497 2.612 2.617 2.787 2.798 2.881

C 4 (3P) 1.224 1.465 1.459 1.570 1.576 1.607

,i -104.50086 -104.88211 -104.95369 -106.2687r4 -106.03937 -112.50146
Cusp -16.96350 -10.96634 -16496577 -16.95669 -26.95214 -17.01951

C 1 1 1l 0.85189 0.84517 0.84820 0.85920 0.88567 0.92623

C 1 3, 2  0.1T649 0.18395 0.18062 0.16830 0.13937 0.07920

018,3 -0.00074 -0.00011 -0.00046 -0.00234 -0.00.594 0.01076

018,4 0.00245 0.0021T 0.00237 0.00337 0.00593 0.01019

C5, -0.00052 -0.00054 -o.00061 -0.00082 -0.00112 -0.00151

01.,6 0.00021 0.00024 0.00027 0.00034 0.00051 -0.00221

£2o -10.22595 -10.606T2 -10.66476 -11.32012 -11.47338 -11.83108
Cusp -16.99022 -16.97968 -16.98170 -16.99964 -17.00832 -16.98680

0 2*,1 -0.23882 -0.23691 - 0.23743 -0.24544 -0.25239 -0.2777

0 2a,2 -0.11908 -0.11959 -0.11987 -0.11900 -0.13056 -0.10274

0 21,3 0.14005 0.14504 0.13795 0.17025 0.09289 0.15200

C 2s 4  0.93670 0.93089 0.93T55 0.91033 0.98751 0,93066

02.,5 0.00654 0.00546 0.00782 0.00241 0.02434 0.00530

02a.6 -0.00035 0.00010 -0.00001 0.00185 0.01004 0.00059

a 35 -0.73031 -1.07236 -1.17505 -1.22270 -1.20752 -1.23049

Cusp -16.76015 -16.72967 -16.74820 -16.62437 -l.6.83732 -16.69588

C3, 0.07001 0.07132 0.07321 0.07805 0.084T4 0.08627

038,2 0.04802 0.05010 0.05117 0.05897 0.o6448 0.05180

c a, 0.01033 0.01482 0.01573 0.03468 0.04751 0.03199

35,4 -0.42149 -0.44112 -0. 45062 -0.50811 -0.53027 -0.49176
0 3e,5 0.70o660 o.65189 0.68576 0.64632 0.67235 0.64391

0 33,6 0.43162 0.48073 0.44446 0.50908 0.46670 0.50380

2P -7.69225 -8.07136 -8.14535 -9.00648 -8.78900 -9.55916
Cusp -8.06915 -8.08454 a8.08774 -8.12583 -8.14560 -8.32563

02p,1 0.21126 0.20561 0.20543 0.17599 0.17940 0.21911
cp2 0.81783 0.82121 0.82229 0.83577' 0.84306 o.8o592

C2. 0.01585 0.02M2 0.01796 0.03M2 0.01956 0.!)15W0

2p4 -0.00394 -0.00457 -0.00509 0.01137 -0.00519 -0.00369

a P -0.14T72 -0.50603 -0.50013 -0.58933 -0.58439 -0.59575

cusp -8.14508 -8.12119 -8.12953 -8.12036 -8.13553 -8.37302

c PI -0.0508 -0.05192 -0.05186 -0.05079 -0.04652 -0.05%70

C~p.2 -0.21340 -0.23694 -0.23666 -0.28976 -0.2,6765 -0.24645

C3P.3 0.61008 0.56419 0.57193 0.59434 0.59193 0.58595

c 3,4 0.52453 0.54343 0.53765 0.51794 0.52288 0.52859

*3tstes which SIM nOt the loosest of a syovostry species.

21



TABLE VUI. scr Orbital@ ad Energies for Argon and mA -hoae States of Argon, Simple Basis Sets

1r'S Ir( ) A+(23A+2PA ( ) r
3p-hole 3m-hole) 2p-hole. 2s-hole li-hole

3 -526.8155 -526.2T29 -525.5961 -517.6676 -5141.8779 -1109.3881

V/T -2.000001 -2.000001 -1.999997 -2.000000 -2.000002 -2.000015

CI(1s) 19.4119 19.4112 19.4154 19.138 19.015 18.566

C2 (2m) 17.0341 17.0241 17.07 16.639 16.371 16.958

cC3 3) 10.9413 10.911 10.896 10.896 11.085 11.082

Ci,(2m) 6.275 6.279 6.277 6.1136 6.537 6.562

C508) 3.187 3.259 3.232 3.171 3.311 3.532

C6(38) 2.005 2.185 2.201 2.311 2.230 2.3110

C1 (2p) 11.027 11.073 11.095 11.4102 11.1117 1.1.208

C22) 6.095 6.113 6.120 6.388 6.3415 6.1198

C3(3) 2.886 2.956 2.972 3.127 3.1412 3.2341

C43) 1.609 1.811 1.812 1.919 1.928 1.963

'is -118.60817 -119.13197 -119.1930T -120.65611 -12039131 -127.27928

*Asp -17.95816 -17.9580 -17.95995 -17.91695 -17.95166 -18.01716

01e' 1 .86927 0.86975 0.86693 0.88&77 0.89177 0.911351

ls2 0.15689 0.15636 0.159119 0.13538 0.12918 o.05966

16,3 -0.002415 -0.00272 -0.00237 -o.00638 -0.00718 o.0096

C15,11  0.00311 0.00368 0.00318 0.00583 0.0611 0.00999

C1 5 5  -0.00079 -0.00095 -0.00096 -0.001411 -0.00112 -0.00123

Cis 6  0.00035 0.00016 0.00015 0.00063 0.00069 -0.002441

428 -12.32139 -12.83595 -12.88297 -13.6158T -13.7T3641 -111.17T480

CUSP -17.98911 -17.99026 -17.99083 -18.00607 .18.0200T -18.03109

2,1 -0.211687 -0.211712 -0.211592 -0.25697 -0.25799 -0.28557

252 -0.12262 -0.12272 -0.12286 -0.122 -0.136241 -0.10621

C28,1 0129 0.12381 0.12281 0.12539 0.08266 0.141049

0 25,.3 0.12830 0.o6 .95768 0.96571 1.003T8 o.941875

02. .007115 0.00727 0.00963 0.00599 0.02191 0.007241

029,6 -0.00027 -0.00033 -0.00010 0.00090 0.0080 .01

-1.27666 -1.71130 -1.81793 -1.89215 -1.&r392 -1.90793

cusp -17.75815 -17.75636 -17.741072 -17.72879 _17.83920 -1.53

03. 0.o7681 0.07917 0.08033 0.08623 0.09081 0.o9367

c 30.1 0.051192 0.05722 0.05"13 0.06789 0.07238 0.05916

c 38,2 0.o2678 0.03123 0.03317 0.053T7 0.05812 0.0161

0 3511 -0.417508 -o.496041 -0.50585 -0.56189 -0.571108 -0.541330

c 36, 0.65610 0.60506 0.631191 0.60870 0.67677 0.59538

03n56 0.418338 0.53015 0.50001 0.511657 0.1163T2 0.55601

4P -9.,57061 -10.08339 -10.141938 -11.10839 -10.86733 -11.71788

cusp -8.609M5 -8.61881 -8.62150 -8.655421 -8.67770 -8.841569

02, 0.19611 0.192410 0.19107 0.16131 0.1%737 0.20753

201 .82&78 0.83062 o.83266 0.81393 0.851841 0.814157

Cp2 0.01861 0.02212 0.0201 0.038W5 0.02168 o.016412

02,11 -0.00197 -o00517 -0.00629 0.00967 -0.00620 -0.004"2

-0.59016 -1.041550 -1.03108 -1.15871 -1.15291 -1.17519

3up 8639 -8617 86818 -8.624160 -8.63667 -8.86975

c -0.05019 -0.052119 -0.005178 -0.01941 -0.01559 -0.05682

C 3,1 .0.25002 -0.27029 -0.26961 -0.31930 -0.29823 -0.27652

c 3p,2 0.58087 0.55695 o.554183 0.58189 0.57570 o.56927

c 3.3 0.53221 0.511085 0.5116 0.52121 0.52995 o.!53616

S3tates tItich Ore -It1 the 10,551 t of sy117 peoe
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TABLE VIII. SCY Orbitals and Erorgies for K
+ 

and nJ-hole States of K', 3Simple Basis sets

K(s ++(2p) K ++(2 3) K++(2p)s e'+ 2* K+,+(2s)*
3p-hole 36-hole 2p-hole 2s-hele 15-hole

3 -599.0159 -597.8901 -597.1025 -587.682o -584.6705 -466.4280

V/T -2.000002 -2.000002 -2.000002 -2.000002 -1.99999 -1.999995

c1 ( 1) 20.222 20.200 20.339 19.998 20.006 19. 64

C2(20) 17.611 17.568 17.799 17.194 17.116 17.522
Cps5) 11.812 11.804 11.603 11.868 11.962 12.155

C4 (28) 6.793 6.805 6.762 6.999 7.049 7.134
C5(3) 3.502 3.520 3.599 3.787 3.660 3.814

C 6 (3) 2.338 2.491 2.573 2.658 2.600 2.662

Ci(2p) 11.838 11.880 11.890 12.210 12.228 11.965
C2(2P) 6.601 6.619 6.621 6.889 6.846 6.998
C3 (3v) 3.239 3.290 3.300 3.441 3.453 3.561
C4 (3P) 1.965 2.167 2.156 2.252 2.259 2.302

,is -133.7T573 -134.40246 -134.45380 -136.06274 -135.76712 -143.07576
Cusp -18.95218 -18.95205 -18.95638 -18.94390 -18.95098 -19.01711

cle'l 0.88800 0.88948 0.88039 0.90332 0.90230 0.95351
cl,2 o.13603 0.13446 0.14429 0.11956 0.12092 0.04811
C12,3 -0.00472 -0.00528 -0.00396 -0.00904 -0.0085 0.00779
18.4 0.00458 0.00501 0.00448 0.00720 0.00749 0.01140

C18,5 -0.00112 -0.00136 -0.00132 -0.00185 -0.00174 -0.00128
C1s, 6  0.00053 O.O0070 0.0066 0.00089 0.00090 -0.00243

'20 -14.70793 -15.33966 -15.37635 -16.18405 -16.34594 -16.79;222
Cusp -18.99464 -19.00240 -18.99354 -19.00464 -19.01649 -19.00922

c2•,l -0.25518 -0.25580 -0.25269 -0.26397 -o.26285 -0.29070
C28,2  -0.12988 -0.13038 -0.12747 -0.14134 -0.14610 -0.12283
026.3 0.09466 0.09326 O.10736 0.07830 0.05739 0.08431
C2 9, 4  0.99545 0.99744 0.97862 1.02354 1.036?4 1.0160
C2015  0.01053 0.01133 0.01083 0.01144 0.02561 0.01163

C2 , 6  -0.00135 -0.00225 -0.00055 -0.00115 0.00869 -0.00153

538 -1.96364 -2.47755 -2.58857 -2.68729 -2.66576 -2.71209
cusp -18.81626 -18.82281 -18.73490 -18.82718 -18.88418 -18.86195

C3@,1  0.08380 o.08639 0.08671 0.092T7 0.09651 0.10010
032 0.06244 0.06489 o.06623 0.07783 0.08153 0.06895

C39,3  0.04043 0.04354 0.0500 O.06891 0.07410 o.o60o40
c32,4 -0.52140 -0.53996 -0.55866 -0.60641 -o.62185 -0.58590
055 0.63334 0.62015 0.57039 0.56953 0.62156 0.58244
C35,6  0.50598 0. 51587 o.57106 0.58382 0.52239 0.560

42P -11.73792 -12.36825 -12.42694 -13.48136 -13.21596 -14.1475
cusp -9.14221 -9.1487 -9.1" -918073 -9.20343 -9.36415

1 0.18371 0.18054 0.18o3 0.15466 0.15745 0.19632

Cp.2 0.83783 0.03920 o.84055 0.85107 o.85M4 0.82317
c0 3  o.a2oF0 0.056 0.. 2 0.03860 0.02333 0.01796

%.4 -0.00M5 -o.00658 -0.0075 0.0"77 -o.o78 -0.00510

a 3 -1.17044 -1.71127 -1.68849 -1.85283 -1.84601 -1.88080

Cusp -9.14340 -9.14264 -9.14979 -9,13004 -9.14083 -9.37069

03.1 -o.o50lo -o.05196 -0.05152 -o.04788 -0.04447 -0.05596
03:2 -0.28036 -0.2983 -0.29718 -0.34421 -0.32398 -0.30266
03P 3 o.5662 0.5427T 0.54510 0.58046 o.57500 o.56238
03p, 0.53895 0.55028 0.54969 O.51866 0.52659 0.53909

*atete ob m n ta lowt or a ermtII woole..
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The accurate basis. sets for the states of the light atoms (fluorine,
neon, and sodium) are composed of five s and four p basis functions. The
one exception is the basis set for F-, which is composed of six x and five
p basis functions.

The accurate basis sets for the states of the heavier atoms
(chlorine, argon, and potassium) are composed of seven s and either
six or seven p basis functions. The seven p sets used three basis func-
tions to represent the outer loop of the 3 p orbital. The addition of a third
basis function to represent this loop caused only a small improvement in
the total energy. For most of the states of K++, a third basis function
did not cause any improvement in the total energy. Only two basis func-
tions were used to represent the loop for these states.

The simple basis sets for the light atoms are composed of four s
and three p basis functions. Two basis functions are used to represent each
loop of the s orbitals. The simple basis sets for the heavier atoms are
composed of six s and four p basis functions; two basis functions are used
to represent each loop of the orbitals. The automatic exponent variation
procedures of the SCF program converge quickly to the optimum values
of the exponents of the simple basis sets; almost no manual examination
of the intermediate results, and consequent readjustment of the exponent
variation parameters, are required. Thus, the calculation of the simple
basis set functions is extremely automatic and requires the use of little
human or machine time. Of the simple basis set SCF functions, the two
which give the poorest approximations to the exact HF functions are the
functions for the negative ions F- and C1-. (The simple basis sets for
the light atoms were called nominal basis sets in an earlier paper.(9)
The reasons for the use of this name were explained in that paper.)

The optimum values of the exponents are not determined in all
cases to the number of significant figures given in Tables I-VIII. This is
especially true for the large exponents of the basis functions used to rep-
resent inner loops, and for the large, accurate, basis sets. Some of the
exponents used to represent a loop are better determined than others.
The exponents of the dominant basis functions (usually the basis functions
with the largest vector coefficients Cnip) are often well-determined once
the exponents of the less important basis functions are fixed. The largest
exponents of the accurate basis sets of the heavier atoms were rounded.
The largest exponents of the p basis functions of some of the states of
Ne+ and Na++ were also rounded to simple values. Beyond this, we did
not make a systematic attempt to round any of the other exponents but
used them, rounded to three decimal places, as they were obtained from
the SCF computer program. When exponents were rounded, the vector
coefficients given are those determined from SCF calculations made using
the rounded values of the exponents.
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B. Accuracy of the SCF Wave Functions

Estimates were made of the effect of round-off ;rrors on the SCF
calculations. As a part of the round-off error, we include the extent to
which the results are not self-consistent solutions of the matrix HF equa-
tions. Our estimates of round-off, error are based, primarily, on informa-
tion gained in the following ways:

1. The examination of the convergence thresholds, for diagonali-
zation and self-consistency met by the SCF vector coefficients. These
thresholds are part of the output of the computer program and are also
set automatically by the program depending on the features of the calcula-
tion being performed.(4) Unfortunately, our experience indicates that
these thresholds give a low estimate of the effects of round-off errors.

2. The comparison of the results of SCF calculations performed
on the IBM 704 and on the IBM 7094. The most important difference be-
tween the 704 and 7094 programs is that in the 7094 program the results
of floating-point addition and multiplication are rounded, while in the 704
program they are not. Thus a comparison of the results of SCF calcula-
tions, performed on the 704 and 7094, should provide an estimate, most
likely on the high side, of the effect of rounding errors on the 7094 results.

3. The comparison of the results of two SCF calculations, both
performed on the 7094 and using the same basis set, but with somewhat

different initial approximations for the SCF eigenvectors.

For the calculations performed with small basis sets, viz., the
simple sets for the heavier atoms (chlorine, argon, and potassium) and
both the simple and accurate sets for the lighter atoms (fluorine, neon,
and sodium), the estimates of round-off errors are the following: The
round-off error in the total energy and V/T is probably less than or
equal to five units in the eighth significant figure.. For those states for
which the total energy is just larger than 100 Hartrees, the round-off
error in the total energy is probably less than two units in the eighth
significant figure. The round-off error in the Cni's and CnI,p'S is probably less
than or equal to one unit in the fifth decimal place (that is, one unit in the last
figure given for these quantities in Tables I-VIJI). The round-off error
in the cusps is usually less than one unit in the fifth decimal place, but
in some cases is probably about three or four units in the fifth decimal
place.

For calculations with the accurate basis sets for the heavier
atoms, the estimates of round-off error are the following: The round-off
error in the total energy is probably less than four to eight units in the
eighth significant figure. The round-off error in V/T is usually about
five units in the eighth significant figure, but in a few cases it is as large
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as four in the seventh significant figure. The round-off error for the Ent's
and cusps varies depending on the orbital considered (is, Zs, Zp, etc.), but
in any case is no more than one or two units in the fourth decimal place.
The round-off error for the Cni,p's for s orbitals is about one unit in the
fifth decimal place, and for p orbitals is less than one unit in the fourth
place.

The round-off error is larger for the vector coefficients of p
orbitals because the p basis functions form a more nearly linearly depen-
dent set than the s basis functions. The diagonalization procedures lose
accuracy as the basis set becomes linearly dependent. For example, for
the accurate basis set for neutral argon, the determinant of the overlap
matrix of the p basis functions is 0.5 x 10-6; for the s basis functions it
is 5.3 x 10-6, a factor of 10 larger. But, because of the redundancy of the
p basis functions, the round-off errors in the vector coefficients may not
have a large effect on the numerical values of the p orbitals.

Although the vectors given in Tables I-VIII may not be SCF eigen-
vectors to the number of figures given, they do form an orthonormal set
to the number of figures given.

It is important to obtain reliable estimates of the accuracy of the
analytic SCF wave functions. By accuracy of the analytic functions we
mean how closely they represent the exact HF solutions. Information on
the accuracy of the analytic functions may be obtained in the following ways:

1. The comparison of analytic functions with solutions obtained by
direct numerical integration. This method has limited usefulness; first,
because numerical solutions are often not available and, second, because
accurate analytic functions are often better than the available numerical
solutions.

2. The comparison of different, good, analytic functions for the
same state, calculated independently by different workers or with a dif-
ferent choice of principal quantum numbers for the basis functions, but
with very nearly the same total energy. These calculations are not likely
to have the same systematic errors because of individual peculiarities in
the choice and optimization of the basis functions. Thus, it is reasonable
that the differences between the results of these calculations should rep-
resent the random error of functions with this total energy. These differ-
ences provide a good basis for estimating the accuracy of the functions.

3. The examination of the convergence of the properties of the
SCF functions obtained in the process of building up the basis set from a
small set to the final accurate set. This method is very powerful when the
basis set is completely reoptimized at each step of the build-up so that the
effects of systematic errors on the choice of basis functions to represent a
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loop are minimized. These techniques and their application to first-row
atoms are discussed elsewhere.(9)

The cusp is not useful as a guide to the accuracy of any fairly good
analytic SCF function. For all but very small basis sets, the cusp condition

is satisfied well enough, if optimized basis functions are used, to insure
against unreasonable behavior at the origin. This is because an analytic
SCF radial function Pnl(r), Pnl(r) = rFni(r) = rZR p(r)Cn1,p, goes near
the origin as

Pn(r) = A0(n1)r 2 + 1 [I + (CusPnj)r + 0(r')]. (13)

The dominant term in this expansion is Ao(nl), not the cusp, and Pni is
not overly sensitive to errors in the cusp.

Fortunately, it is not necessary to apply the tests described above
to every analytic SCF function that is calculated. When the SCF functions
of a series of similar states have been calculated in a systematic way, as
described in Section III of this paper, the accuracy of each function in the
series may be inferred from careful estimates of the accuracy of the
functions of only a few states. One must take some precautions when making
these inferences of estimates of accuracy. It is important, for example, to
remember that it may be more difficult to determine more diffuse orbitals,
e.g., orbitals of negative ions, as accurately as less diffuse ones.

Tables IX-XII present comparisons of the results of several HF
calculations of Ne, F-, Ar, and C1- with the results obtained with our ac-
curate basis set functions. In each case, we give comparisons with results
obtained by direct numerical integration of the HF equations;* and, except
for CG-, we also give comparisons with analytic SCF functions with very
nearly the same energy as our accurate-set functions. The analytic func-
tions whose total SCF energies differ only in the eighth significant figure
are grouped together with the accurate-set function at the left of the tables.
Comparisons between these functions give information of the type 2 above.
We have included, for each case, comparison with the results obtained with
the simple basis set functions so that the accuracy of these functions may
be determined.

For Ne and F-, we include comparisons with the analytic SCF cal-
culations of Allen,(3 6 ) and for Ar and C-, with the analytic SCF calcula-
tions of Watson and Freeman.(37) These calculations were performed
without using techniques for the automatic optimization of the exponents of
the basis functions.

*For numerical HF calculations of Ne, F-, Ar, and C1', see Refs. 32,

33, 34, and 35, respectively.
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TABLE IX. Comparlson .1 several Hartree-Fock Calculations of Noon

(Values are in .u.)

Worsleyc
Thiis Calculation (Numarical tis Calculation

Accurate Set Fixed Cusp Set
a  

Cl ntl
b 

integation) Simple Set Allend

9 -128.54709 -128.54703 -128.5701 ...... -128.54648 -128.54319

AR 0 -0.00006 -0.00008 ..... -0.00061 -0.00390

418 -32.77233 -32.77229 -32.77277 -32.775 -32.77162 -32.76740
he 0 -0.0001 +0.0001 +0.003 -0.00071 -0.00493

CUSpI s  -10.0250 -10.0000 -10.0049 ..... -10.0101 -9.9994

aliple +0.0250 .+.00*9 . ... +0.0101 -0.0006
1Ao(1S)I 60.777 60.741 60.750 60.77 60.761 60.746
1A(C)sI -0.01 +0.03 +0.02 0 +0.01 +0.02

0.>10 0.15763 0.15763 0.15763 ..... o.15763 o. 15764.

40>1, 0 0.00000 0.00000 ..... 0.00000 -0.00001
<r2>he 0.0337 0.03317 0.0337 ..... 0.0337 0.033417

,<v
2
>l. 0 0.00000 0.00000 ...... 0.00000 0.00000

0 0.0005 MOM00.0 . 0.0005 0.0006

Iar 1 sa o i r < 0 0.0002 0.0003 0.003 o.004 0.0005

£2s -1.93031 -1.93031 -1.93048 -1.933 -1.92975 -1.92592
442m 0 0.00000 +0.00017 +0.003 -0.00056 -0.0039

CusP20 -10.0535 -10.0000 -10.0052 ..... -io.136 -io.3010

ACU1P 2 s +0.053 ..... +0.0052 ..... +0.0136 +0.3010
IAo(C2)I 14.280 14,.253 14,.26, 111.27 14,.269 11.34,1,

&1AI(2)j -0.01 0.02 +0.01 0 0.00 -0.07

<r>2, 0.89209 0.89207 0.89216 ..... 0.89135 0.89267

"< 2. 0 +0.00002 -0.00007 ..... +0.0007, -0.00058
<r>2. 0.9669 .96691 0,96735 ..... 0.96359 o.96964

A02>28 0 +0.00003 -0.0001 ..... +0.00335 -0.00270

[( )20 0.001 0.0015 ..... 0.005 0.0061
IAF 2.. o r < 1.0 0 0.0002 0.0004 0.0003 0.0015 0.0023

1.0 ,; r < * 0 0.0009 0.0012 0.001 o.o016 0.016

-2p -0.85034 -0.85033 -o.8518 -0.8525 -o.84974 -0.81610

02p 0 -0.00001 +0.00011 +0.0022 -o.00060 -0.004124,

C5uP2p -5.0003 -5.0000 -5.0000 ..... -1.6751 -4.7356
6CUBp2  +0.0003 ..... 0.0000 ..... -0.3219 -0.26441
IAo (2P 1 27.80 27.732 27.861 27.87 27.159 27.479

'IAo(2p)l +0.07 +0.1 +0.01 0 +0.71 +0.39

<r>2p 0.96518 0.96519 0.96537 ..... 0.96477 0.96189

0< >2 0 -0.00001 -0.00019 ..... +0.000 1 +0.00029
<2>2p 1.22789 1.22787 1.22901 ..... 1.22516 1.23800

0' >2p 0 +0.00002 -0.001 ..... +0.00273 -0.01011

[f(,p 2p )2]j 0 0.0010 0.0017 ..... 0.0037 0.0186
I0?2lm,, 0 , r < 1.0 0 0.0002 0.0006 0.0002 0.0011 0.0063

1.0 & r <. 0 0.000=6 0.0011 0.001 0.0026 0.0102

aP. S. Begas. T. L. Gillbert. C. C. J. Detchasa. wA H. D. Chea (ese Rd. 9).

bEC. cm4ee, c. CC.J. ftoes Aa. and M. Yeshisensi (se Itef. 7).

OB. H, Worley (see Ref. 32).

dL. C. Allen (see Ref. 36).
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TABLE X. Comparison of Several Hartree-Fock Calculations of F*

(Values are in a.u.)

l roese 
b

Tqlhi Calculation a (Numerical The Calculation
Accurate Set Fixed Cusp Set Integration) Clenenti, Allen

d  
Simple Set

9 -99.459440 -99.459444 . . . . -99.459363 -99.458879 -99.457854

0, 0 +0.000004 . . . . -0.000077 -0.o00561 -0.001586

'in -25.82961 -25.82961 -25.8225 -25.82944 -25.82957 -25.82687

Asia 0 +0.00000 -0.0071 -0.00017 -0.00004 -0.00274

Cuesp, -9.0240 -9.0000 . . . . -9.0174 -9.0055 -9.0124

ACUOPlS +0.0240 . . . . . . +0.0174 +0.0055 +0.0124
1Ao(1S)J 51.724 51.702 51.705 51.717 51.703 51.713

AIA o (is)i -0.019 +0.003 0 -0.012 +0.002 -0.008

<r>l 0.17576 0.17576 . . . . 0.17576 0.17577 0.17575
a<r>,, 0 0.00000 . . . . 0.00000 -0.00001 +0.00001
<r2>

-  
0.04162 0.04162 . . . . 0.04162 0.04162 0.04161

L<r >,a 0 0.00000 . . . . 0.00000 0.00000 +0.00001
04018)2]i0 'o.ooo2 . . . . 0.ooo4 0.0o04 0.0006

IAPls1max 0 cr < - 0.0002 0.0003 0.0002 0.0004 0.0005

925 -1.07458 -1.07458 -1.0765 -1.07435 -1.07468 -1.07236
A' 2 3 0 0.00000 +0.0019 -0.00023 +0.00010 -0.00222

Cusp2s -9.0678 -9.0000 . . . . -9.0345 -9.2576 -9.0753
LCUSP2 5  +0.0678 ..... . . . . +0.0345 +0.2576 +0.0753
IAo(2e)1 11.683 11.667 11.669 11.670 11.729 11.688

AIAo (25)I -0.014 +0.002 0 -0.001 -0.060 -0.019

<r>2, 1.03555 1.03556 . . . . 1.03540 1.03617 1.03333

a<r>2, 0 -0.00001 . . . . +0.00015 -0.00062 +0.00222
<r2>2 8 1.31886 1.31903 . . . . 1.31776 1.32219 1.30703

,<r2>2s 0 -0.00017 . . . . +0.00110 -0.00333 +0.01183

f( ' ] 0 0.0009 . . . . 0.0027 0.0035 0.0118
1
AP2e1max 0 :E r < 1.5 0 0.0003 0.0005 0.0009 0.0015 0.0024

1.5 :E r < - 0 0.0006 0.0005 0.0018 0.0026 0.0088

62p -0.18098 -0.18098 -0.1815 -0.18079 -0.18122 -0.17886

662p 0 0.00000 +0.0005 -0.00019 +0.00024 -0.00212

CueP 2 p -4.5322 -4.5000 . . . . -4.4282 -4.1523 -4.0292
ACu"P 2 -  +0.0322 ..... . . . . -0.0718 -0.3477 -0.4708
1AO(2p3) 18.861 18:882 18.849 18.740 18.268 18.017

A IAo (2p)I -0.012 -0.033 0 +0.109 +0.581 +0.832

0>2p 1.25556 1.25557 . . . . 1.25512 1.25604 1.25206

L<r>2 0 -0.00001 . . . . +0.00044 -0.00048 +0.00350

<r2>2p 2.20956 2.209f1 . . . . 2.20516 2.21748 2.17892

0<r >2p 0 -0.00015 . . . . +0.00440 -0.00792 +0.03064

[Pzp)2A 0 0.0007 . . . . 0.0024 o.ooT6 0.0121

0 P2plmx 0 gf r < 1.5 0 0.0002 0.0002 0.0002 0.0012 0.0021
1.5 & r < - 0 0.0003 o.o5 0.0013 0.0034 0.0067

ap. S. Baus, T. L. Gilbert, C. C. J. R,,othaan, and H. Cohen (see Ref. 9).

bC. Froeae (see Ref. 33).

CE. Clementi and A. D. McLean (see Ref. 35).

dL. C. Allen (see Raf. 36).
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TADLE XI. C4opwsm ad oevral Hautres-Fock CalculatLas ad Axga

(Values w'e in a.u.)

Ibis Ca] culatlo se maill 
b  

Hrr
A..... S1 tn cm set)ulp ) (Numerieal d This Calculation Watson and

7P (71 .d cusp t Intepation) Cleme.tl 811. set Frmean*

S-52.81746 -26.8t45 -526.8-743 ..... -526.817T -526.81553 -526.81463
AX 0 -0.00001 -0.00003 ..... WO.0039 -0.00193 -- 0.00283

a -118.61014 -118.61042 -118.6103o -118.6 -118.60987 -118.60fL7 -118.6og5o

Asia 0 +0.00028 +0.00016 0.0 -0.0002T -0.00197 -0.00064

cu , -18.0037 -18.0063 -18.0000 ..... -18.0298 -17.9582 -17.9727
&*ASP,, +0.003T +0.0063 ........ +0.0298 -0.0418 -0.0273

'A 0c18)I1 148.87 148.88 148.85 148.8 148.92 140.77 148.81
AlA(l)I -0.1 -0.1 0.0 0 -0.1 0.0 0.0

0>18 0.0610 0.0@610 0.09610 ..... 0.0610 0.0 611 O.O8610

<r>I 0. o.oo00 o.oo. . 0.00000 -0.00001 0.00000
<,2>1 0.00990 0.009o 0oo 0.010 0.009 0.0090 0.00996

.,>.0 0.00000 0.00000 0.000 0.00000 0.00000 0.00000

0f!&1.)2 ]i 0 .0001 A0002 ..... t.0003 0.0005 0.0004
16i.asiux 0 -r . 0 0.0001 0.0002 o.007 0.0003 0.0006 0.0004

'20 -12.32193 -12.32220 -12.32224 -12.33 -12.32150 -12.32139 -12.32141

2 0 +0.00027 +0.00021 +0.01 -0.00043 -0.00054 .00 2

CuaP2s -179965 -18.0049 -18.0000 ..... -17.9940 -27.9891 -18.2048

AOP2 -0.0035 40.0049 -o006o -0.0109 +0.2048
IAo(2)I 42.257 2 . 2.25 42.254 42.252 42.276

AIAo(28)l -0.01 -0.02 .0.01 0 0.00 0.00 -0.03

<r>,, 0.41228 0,412 0.419 ..... 0.41228 0.41231 0.41228

"<>29 0 40.00001 -0.00001 . .; . . 0.00000 -0.00003 0.00000

<2>2 0.20123 0.20122 0.20123 0.201 0.20122 0.20125 0.20122

*<r2 >9 0 +0.00001 0.00000 0.000 40.00001 -0.000 +0.00001

0f(&lp.)2]* 0 o.ooo o.ooo ...... 0.0008 0.0005 0.0006
020 6, 0.35 A o.oooe o.ooo2 0.002 0.0002 0.0004 0.0003

0.35 I= r < * 0 0.0005 0.0002 0.002 o.0=6 o.0006 0.0005

'38 -1.27725 -1.27734 -1.27735 -1.2775  -1.27692 -1.2 -1.2T649
&a30 0 +O.0Oo0 +0.00010 +0.0002 -0.00033 -0.00059 -o.076

cusp 35  -17.9689 -17.9517 -18.0000 ..... -18.0976 -17.7582 -17.9798
ACUSP35 -0.0311 -0.0483 ... . .. .. +0.0976 -0.2418 -0.0202
IAo(39) 1 13.199 13.197 23.199 13.21 13.222 13.146 13.201
lao(300l +0.01 +0.01 +.0.01 0 -0.01 +o.06 +O.01

0*01.42196 1.4222 1.42192 ..... 1.42256 1.42218 1.42252

0<' -0.00032 40.00004 -0000 -. 002 0005

_,2 0 -0.00174 40.06M24 40.001 -0.00232 -0.00069 -0.00460

0)]! 0.0009 o.O04 ..... 0.0025 0.0006 0.0059
0 386 o A r < 1.2 0 0.0002 0.000 0.001 0.0009 0.0007 0.0003

.. 2 • * <0 O.006 0.0008 0.001 0.0021 0.0004 0.0042
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TABLX Xl. Continued
(Values are in ..u.)

Alternate
8  

Ka-tree
0

This Calculation J~rge Set mfhlib (Numerical d This Calculation Watson aVd
Accurae Set and p (Viend Cuep Set) Integratlon) Clmenti Smple Set Melln

a2p -9.571T27 -9.57152 -9.57146 -9.575 -9.57083 -9.57o61 -9.57072

642p 0 +0.00025 +0.00019 +0.004 -0.00044 -0.0066 -0.00055

Cusp2p -8.59 -8. 9577 -9.0000 .-... . 8.9011 -8.6098 -8.7697

Acp -0.o741 -0.0423 ...... . . -0.0989 -0.3902 -0.2303

)AO(2Z) 181.89 182.OT 182.14 182.35 181.81 179.21 180.54

AIAO(2p)I +0"46 +0.26 +0.21 0 +0.54 +3.15 +1.81

0-p 0.37533 0.37533 0.3T533 ..... 0.37529 0.37527 0.37536
6<*2V 0 0.00000 0.00000 ..... +0.00004 +0.00006 -0.00003

O2.2 0.17434 O.1T434 0.17434 0.174 0.17430 O.17427 0.17437

0 -0.>2 0 o.oo00 0.00000 0.000 +0.00004 +.000007 -0.00003

cf1.p2)231 0 0.0005 0.0004 ..... 0.0009 0.0028 0.0016

I Pl,Ix 0 A r <. 0 0.0002 0.0003 0.002 0.0007 o. 6 0.0014

9 3 -0.59092 -0.59102 70.5999 -0.5905 -0.59071 -0.59046 -0.58997

U,3P0 +0.00010 +0.00007 -0.0004 -0.00021 -0.00046 -0.00095

Cu p3 -8.8809 -8.9471 -9.0000 ..... -8.9216 -8.6399 -9.1924

&Nap -0.1191 -0.0 59 ..... ..... -0.0784 -0.3601 +0.1924

Ao(3I 90.707 50.824 5o.804 50.97 50.790 50.018 51.638

61A0 ()I +0.26 +0.15 +0.17 0 +0.18 0.95 -0.67

<r>, 1.66276 1.66289 1.66298 ..... 1.66181 1.66156 1.66343

A<r>P 0 -0.00013 -0.00022 ..... +0.00095 +0.00120 -0,00067
<r2 >3P 3•30917 3•31003 3.31097 3•312 3.30105 3.29947 3.32T62

A<r2>P0 -0.0006 -0.00170 -0.003 +0.00812 +0.00970 -0.01845

0 p)2j 0.0006 0.0019 0.0051 0.051 0.0179

W 0IW ,, o 0 < 1.3 0 0.0003 0.0002 0.001 0.0009 o.o07 0.0025

1.3 :E r < . 0 0.0004 0.0011 0.001 0.0032 0.0033 0.009

aP. S. Bases (unpublished).

bo. L. M.Ui (to be published).

cD. R. Hartre and W. Hatree ("a Rat. 34) solred the SCF equations with ecaneege ely for the 3. and 4p wave functien.; the Is, Zs. and Zp wave
fAecticna with exchange were obtaied froon the functimn. witheut exchaee aend iterpelation between the values for Ca+

+ , 
K+, ead Ci.

4
1. Clementi (see Ref. 39). Details of the functie are not pubtished tI ClementilW paper bet are avaUable at the Library of Coneress (see Ref. 40).

eR. Z. Watso. and A. J. Treament (see Ref. 37).
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TABLE XUI. Comparison of Several Hartree-Fock Calculations of C1-

(Values are in au.)

Hartre~a
This Calculation (Numerical Watson agd This Calculation

Accurate Set integration) Freeman Simple Set

9 -459.5T684 . .. -59.5T4&99 -459.5T362

AE0 ..... -0.o0185 -0.00322

a 1s -104-50546 -104.5 5 -104.50829 -104.50086

&,is 0 +0.04 +0.00283 -0.00*60

Cupe-17.00*8 . . -16.9691 -16.9635

ACUSP 1 8 +0.0048 ..... -0.0309 -0.0365

1A0 (ls)l 136.48 136.5 136.41 136.40

aA,I1)I 0.0 0 +0.1 +0.1

<>,0.09130 ..... 0;09130 0.09130

&<~,0 ..... 0.00000 0.00000

<2>a0.01120 0.011 0.*01120 0.01120

&r >1. 0 0.0 0.00000 0.00000

tf(& 1. )2 ]1 0 ..... 0.0004 0.0005

'ap1s'max 0 .r < a 0 0.001 0.0005 0.0008

e28 -10.22916 -10.235 -10.23225 -10.22595

afa0 +0.006 +0.00309 -0.00321

Cusp2 8  -16.9933 ..... -17.017* -16.9902

ACu15P2 . -0.006T7 +0.017* -0.0098

IA0 (2s)I 38.238 38.24 38.254 38.238

&IA0 (2d)I 0.00 0 -0.01 0.00

<>,0.44180 ..... 0.441T9 0.44181

a~>,0 ..... +0.00001 -0.00001
<r2>2  0.23129 0.231 0.23129 0.23130

2<r>2s 0 0.00 ~ 0.ooooo -0.00001

Ef(AP2 .)2 ]1 0 .o .. o oo6 --9.0003

'ap2simax 0 e- r < 0.35 0 0.001 0.0003 0.0002

0.35 4 r < m0 0.001 0.0004 0.0003

9 38 -0.73320 -0.727 -0.735*7 -0.73031
~E50 -o.oo6 +0.00227 -0.00289

Cusp3 s -16.9622 ..... -17.0158 -16.76o2

ACusp 3 8 -0.0378 ..... +0.0158 -0.2398
1A0(3a)I1 11.261 11.31 11.273 11.209

&IA0 (35)1 +0.05 0 +0.0* +0.10

<r>3 , 1.60179 .1 .60163 1.60242

a~ >50 ..... +0.00016 -0.00063

2T3, 3.01041 3.012 3.01207 3.01262

a<r >3s, 0 0.002 -0.00166 -0.00221

Ef& 210 ..... 0.0051 0.0007

la :mx 0 z r < 1.3 0 0.001 0.0002 0.0010
1.3!t r <U 0 0.002 5 0.0032 0-0003
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TABLE XI. Continued

(Values are in a.u.)

Hartreea
This Calculation (Numerical Watson a~d This Calculation

Accurate Set Integration) Freeman Simple Set

E2p -7.69557 -7.695 -7.69866 -7.69225
as2p 0 -0.001 +0.00309 -0.00332

C5sp2 p -8.4401 ..... -8.2818 -8.0692

Acusp 2 _  -0.0599 ..... -0.2182 -o.43o8
IAo (2p3I 153.63 154.1 152.46 150.73

AIAo(2P)I +0.5 0 +1.6 +3.4

<r0. 40538 ..... 0.'40540 0.140525

&<r>2, 0 ..... -0.00002 +0.00013
<r2>2p  0.20386 0.20 4 0.20387 0.20369

A<r2 >2p 0 0.000 -0.00001 +0.00017

[Pap2p )2 0 ..... 0.0012 0.0034

ap2pIMa 0 _A r < - 0 0.001 0.0009 0.0031

E3 P -0.15017 -0.14855 -0.15172 -0.14772

AE3 P 0 -0.00162 +0.00155 -0.00245

Cusp3P -8.3803 ..... -8.6557 -8.1451

&Cuspn -0.1197 +0.1557 -0.3549

IAo(3PA 37.927 38.02 38.6ol 37.468

IA 0 (3p)I +0.09 0 -0.58 +0.55

<r>3P 2.02880 ..... 2.03967 2.01910

%<r>3p  0 ..... -0.01087 +0.00970

<r,2 >3P 5.10806 5.137 5.22941 5.01079

A<r 2>3p 0 -0.029 -0.12135 +0.09727

[PAAP3p )2]1 0 . . . . . 0.0207 0.0209

la3pI max 0 _ r < 1.5 0 0.0015 0.0028 0.0021

1.5 _ r < a 0 0.0015 0.0102 0.0116

aD. R. Hartree and W. Hartree (see Ref. 35).

bR. E. Watson and A. J. Freeman (see Ref. 37).
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Where analytic calculations of other workers are reported, we have
used their basis sets to recompute their functions with our program. This
was done so that all the properties of each calculation would be available
for comparison. Tables IX-XII present the results obtained from our re-
calculations. Our recalculations agree closely with the original
calculations.

The total SCF energies in Tables IX-XII are given to eight significant
figures. Although round-off error affects the eighth figure, this is the only
way to distinguish the energies of several of the functions. For each orbital,
we give the values of the orbital energy ene, cusp, A0(nl), the dominant
term in the expansion of the radial-wave function near the origin [defined in
Eq. (13)], and the expectation values of r and rz .

Direct comparisons are also made for the radial wave functions
Pni(r). For each orbital, we give values of the quantity

0f0 [Paccurate set(r) - Pcomparison(r)ydr]

denoted in the tables by [ f(APnV)Z]/z. This is a sum of the differences of
the radial wave functions over their entire range and may be used as an
overall figure of merit for the quality of the comparison function. (This
comparison cannot be made with the numerical functions. The radial
wave functions obtained with the accurate basis sets and by numerical
methods usually agree within one or two units in the last figure given in
the tabulation of the numerical functions, and [ f(APn)]'/2 calculated from
these differences would only reflect rounding errors.) The tables also
give the maximum value of IAP(r) = IPaccurate set(r) - Pcomparison(r)I.
For some orbitals, 1APImax is given for two ranges of r to indicate that
the agreement between some of the radial wave functions is considerably
better for the inner portion of the function than for the tail. The limit of
the ranges is arbitrary. Except for a small range of values of r, usually
at the tail of the orbital, kAP(r)I is smaller than ILP(r)Imax , Thus
IAP(r)lmax gives the worst view of the accuracy of the orbitals.

The differences given in Tables IX-XUI (AE, Ac, etc.) are usually

defined as

AProperty = Property (accurate set)

- Property (comparison function). (14a)

The exceptions are

ACuspne = -Z/(AI + 1) - CusPni (comparison function), (14b)
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and

A IAo(ni) I , IAo(n1) [numerical calculation]l

- IAO(ni) [comparison functionfl. (14c)

For AO(ni), numerical calculations were chosen as a standard of compari-
son because numerical techniques require that the radial functions be de-
termined accurately at the origin. The numerical integration is started
outward from r = 0, and the results are sensitive to any error in the
function at the origin.

The values of the radial wave functions obtained from the accurate
basis SCF calculations agree strikingly well with the values obtained from
numerical calculations.

Worsley(32) gives the neon radial functions, tabulated at logarithmic
intervals, to four decimal places except for the tail region of each orbital
where they are given to only three decimal places. Worsley claims that
the functions are accurate to within two or three units in the last figure
given. At eve.ry point Worsley tabulates, the difference between our accurate
set results and her numerical results, IAP(r)I, is within this limit except
for four points. At the great majority of tabulated points, IAP(r)j is 0 or 1
in the last figure Worsley gives.

Froese(33) claims that her radial wave functions for F-, given to
four decimal places, are accurate to 0.0002. The differences with our
accurate-set results are within this limit with only a few exceptions. At
two points, I Pis(r) = 0.0003; at ten points, I APs(r)i is between 0.0003
and 0.0005; and at five points, IAPzp(r) is between 0.0003 and 0.0005.

Hartree and Hartree(34,35) give the radial wave functions for Ar
and C1- to three decimal places; for the 3s and 3p orbitals of Cl-, they
tabulate ZP(r) rather than P(r) in order to obtain additional accuracy.
For argon, IAPIs(r)l has its largest values at five consecutive points and
is between 0.003 and 0.007; at several points of the 2s and 2p radial
functions, IAP(r)l has its maximum value of 0.002. For the argon 3s and
3p radial functions, IAP(r) is usually 0.000 and is never larger than
0.001 (i.e., 0 or 1 in the last figure that Hartree and Hartree give). The
relatively large disagreements for the Is, 2s, and 2p radial functions occur
because Hartree and Hartree did not obtain these functions by direct solu-
tion of the HF integro-differential equations but rather by an interpolation
between results for CI" and K+. Their 3s and 3p functions, on the other
hand, were obtained as self-consistent numerical solutions of the HF equa-
tions. This explanation is supported by the fact that, for the Is, Zs, and
Zp orbitals of the Hartree and Hartree calculation on .C-, IAP(r) is never
larger than 0.001. Although the agreement between our results and those
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of Hartree and Hartree for the 3s and 3p orbitals of C1" is still good, it
is not as good for these orbitals as for the others. For the 3s radial
function, Z[AP(r)[ is 0.005 at one point in the tail of the function, 0.004 at
the two adjacent points, and 0.002 or 0.003 at several points; for the 3p
function, there are also several points for which ZIAP(r)I is as large as
0.002 and 0.003.

For Ne, F-, Ar, and Cl-, the agreement between the numerical
and accurate basis set analytic radial functions is, in almost all cases,
within the error of the numerical calculations. The 3s and 3p radial
functions of CG" obtained by Hartree and Hartree are slightly more ac-
curate than the accurate basis set analytic functions.

The differences between the orbital energies cni obtained from the
accurate set analytic SCF calculations and from the numerical calculations
are .sometimes larger than might be expected from the small differences
between the radial wave functions. This can be explained from the different
way that the e's are obtained by the two methods. In the analytic method,
the C given is obtained directly as the expectation value of the Fock operator
for the orbital, Eni = < Oni10i0ni>" In the numerical calculations dis-
cussed, E is treated simply as a parameter to be adjusted until the solutions
of the HF equations approximately satisfy the boundary conditions placed
on them. The results of the accurate analytic SCF calculations should give
better values of the e's than the numerical calculations.

The accuracy of the accurate basis set SCF functions given in
Tables I-IV has been estimated. The estimates used the techniques de-
scribed above and, in large part, the information given in Tables IX-XII.
The estimates are generous and probably indicate, for most of the func-
tions, errors larger than the true errors.

The total SCF energy, ESCF, represents the exact HF total
energy to within two units in the seventh significant figure, and the
Gni'S are accurate to about five units in the same decimal place that the
error enters the total energy. When ESCF < 100, the £nl's are accurate
to five units in the fifth decimal place, and when ESCF - 100, to five units
in the fourth decimal place.

For the states of the heavier atoms (chlorine, argon, and potassium)
the Is, Zs, and Zp radial wave functions do not differ from the exact HF
solutions, for any value of r, by more than 0.0005. The Is radial function
is probably accurate to within 0.0002. The 3s and 3p radial functions are
definitely accurate to within 0.00 15, and over much of the range of r are
accurate to within 0.0005. The only exception is the 3s radial function
of C1-, where the error is as large as 0.0025 for a fairly small range of
r near the tail of the function.
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For the states of the light atoms (fluorine, neon, and sodium), the
radial functions are accurate to within 0.0005. The Is radial function is
accurate to within 0.0002. The 2s and 2p radial functions have an error
smaller than 0.0005.

The radial wave function of the outermost s shell (2s for the light
atoms, and 3s for the heavier atoms) is the least accurate function for
any given state. The outermost s shell makes the smallest contribution
to the total energy and so is least well-determined by the exponent variation
procedures which optimize the total energy.

The accurate set SCF functions given in Tables I-IV, except for
C1- and the is-hole state of K+, represent the limit of accuracy which
can be obtained using the single-precision, eight-significant-figure,
floating-point arithmetic of the IBM 704 and 7094 computers. The C1- SCF
function could probably be improved with the addition to the basis set of an
s, and possibly a p, basis function. The function for the Is-hole state of
K+ could be improved slightly if the numerical evaluation in the exponent
variation procedures were altered to minimize round-off error. (This
change has already been made in the latest versions of the SCF programs.)

C. Properties of the SCF Wave Functions

Expectation values of r and r2, for all the states computed are
given in Tables XIII and XIV. These expectation values were calculated
from the accurate basis set SCF functions. For each state, the expecta-
tion values of r and r Z given are taken with respect to each occupied

orbital, <r>ni = f00 [Pn1(r)]2rdr and <r 2>ni = foo [Pni(r)]2 rdr. In

addition, the average values of the <r> and <r 2.> are given. The average
value of <r> is defined by ZNnj<r>nL/ZNnj,where Nni is the electronoccu-
pation of the. nith orbital and the sum j.s over all occupied orbitals. The
values of <r>nj and <r2 >ne represent the exact HF values to within a
few units in the .last figure given. The values of <rz>ni for the outermost
s and p orbitals of a systcm are least accurate, and the errors may be
as large as 20 units in the last figure. These estimates of accuracy may
be checked by reference to the comparisons given in Tables IX-XII.

An extra figure is given for the average values of <r> and <r 2 >

to avoid round-off error if these values are multiplied by the total number
of electrons in the system to give <Zri> and <Krf.>.

Nonzero overlap integrals between many-electron SCF wave func-
tions, calculated from the accurate basis set SCF functions, are given in
Table XV. These results are presented in connection with the discussion,
at the end of Section II, of the lack of orthogonality between excited- and
ground-state SCF functions of the same symmetry.

37



TABLE XIII. Expectation Values of r and rz for F-, Ne, and Na+ and
ni-hole States of F-, Ne, and Na+

(Values are in a.u.; I Bohr = 0.52917A)

F-1)F(2p) F(2S) F(2 S)
2p-hole 2s-hole la-hole

<r>,, 0.1758 0.1757 O.1760 O.1718
<r>2, 1.0355 1.0011 0.9885 0.9435

<r>2p 1.2556 1.0847 1.0934 0.9659
ZN,<r>,/ZNi  0.99560 o.86411 0.87790 o.87267

<r2 >10 .004162 0.04161 0.04177 0.04045

<r2 >2 ,, 1.3189 1.2164 1.1827 1.0836

<r 2 >2 p  2.2096 1.15429 1.5738 1.2245

ZNj<r2>,/ZNi  1.59T83 1.13672 1.18988 1.06166

Ne(1S) Ne+) Ne S) (s) +(2s)
2p-hole 2s-hole 15-hole

<r>l0 .01576 0.1576 0.1578 0.1454
<r>2 o.8921 o.8603 0.8536 0.8171
<r>2p o.9652 0.8759 o.8841 0.7993

ZN,<r>/ZN 0.78905 0.71280 0.71931 0.73159

<r2>18 0.03347 0.03344 0.03357 0.03260

<r2 >2s  0.9669 0.8903 0.8751 0.8056

<r'2 >2p  1.2279 0.9820 1.0032 0.8196

y.N0<r2>,1yM, O.93682 0.75081 0.77351 0.72903

Na+(1S) Na ++(2p) Na ++(23) la ++(2 S)

2p-hole 2s-hole ls-hole

<r>l, 0.1429 0.1428 0.1430 0.1403

<r>2s 0.7791 0.7530 0.7491 0.7196

0>2 0.7962 0.7385 0.7453 0.6845
%<r>, 0.66214 0.60932 0.61190 0.63182

<2>ls 0.02748 0.02744 0.02755 0.02681

<r2>2s 0.7314 0.6779 0.6703 0.6210
<r2>2 o.8159 0.6889 0.7033 0.5932

.N10<r.26>4 i 0.64130 0.53945 0.54949 0.53645
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TABLE XIV. Expectation Values of r and r" for C1-, Ar, and K+ and ni-hole States
of C1-, Ar, and K+

(Values are in a.u.; I Bohr = 0.5Z917A)

c1'(1s) c1( 2 p) C1(2 s c1( 2 p) cl( 2 s) c1( 2 s)
3P-hole 3W-hoie 2p-hole 2s-hole la-hole

<P>l3 0.09130 0.09130 0.09130 0.09121 0.09134 0.09031

<r>2, 0.4418 0.4417 0.4424 0.4338 0.4390 0.4226

<r>3, 1.6018 1.5557 1.5341 1.4696 1.4759 1.4514

<r>2, 0.4054 0.14057 0.4050 0.4004 0.3952 0.3776

<r>3 2.0288 1.8418 1.8380 1.6928 1.6992 1.6623

IN,<r> /? 1.04860 0.93065 0.94469 0.94988 0.94942 0.94573

<r2>10 0.01120 0.01120 0.01120 0.01117 0.01122 0.01105

<r2>29 0.2313 0.2312 0.2321 0.2225 0.2300 0.2117

<r2 >38 3.0104 2.8131 2.7299 2.5069 2.5364 2.4472

<r20>2P  0.2039 0.2043 0.2034 0.2020 0.1930 0.1762

<r2>3P 5.1081 4.0575 4.0444 3.4404 3.4480 3.3052
ZKI<r2>I/XNI 2.13207 1.62498 1.68842 1.59608 1.59830 1.54220

A.(hs) r,( 2 p) Ar+( 2 S) Ar+(2p) r+( 2 S) A.+(2S)
3p-hole 33-hole 2p-hole 2s-hole l-hole

<r> O.08610 0.08610 0.08611 0.08602 O.08614 0.08523

<r>2, 0.4123 0.4121 0.4128 0.4052 0.4100 0.3954

<r>3, 1.4220 1.3814 1.3679 1.3162 1.3209 1.3005

0.>2p  0.3753 0.3756 0.3749 0.3714 0.3667 0.3515
<r>3p 1.6628 1.5584 1.5589 1.14560 1.4627 1.4321

ZNj<r.>j/2 i 0.892714 0.81205 0.82171 0.83576 0.83531 0.83403

<r2>i s  O.00996 0.00996 0.00996 0.00994 0.00997 0.00983

<r2>2s 0.2012 0.2010 0.2019 0.1940 0.2003 0.1852

<r2>38 2.3491 2.2018 2.1570 1.9980 2.0185 1.9517

<r2>2p  0.1743 o.1747 0.1739 0.1730 0.1658 0.1524

<r2>3P 3.3092 2.8601 2.8642 2.5102 2.5196 2.4179

ZN,<r2>,/zN, 1.44565 1.18672 1.22406 1.19586 1.19821 1.15911

I(+ (1S) Y,*+(2 P) K,-+(2s) e*+(2p) K*+(2S) K++(2S)
3p-hole 35-hole 2p-hole 2s-hole l-hole

<r>l s  0.08147 0.08146 0.08147 0.08139 0.08150 0.08069

<r>2, 0.3864 0.3861 0.3869 0.3801 0.3845 0.3715

<r>3, 1.2768 1.2435 1.2341 1.1922 1.1959 1.1787

<r>2, 0.3494 0.3496 0.3490 0.3462 0.3419 0.3287

<r>3P  1.4312 1.3611 1.3629 1.2850 1.2915 1.2657

XU,<r>IN, 0.78740 0.72503 0.73189 0.74991 0.74942 0.74987

<r2>i, 0.00891 O.00891 0.00891 0.00889 0.00892 O.00880

<r.2>23 o.1766 0.1763 0.1771 0.1706 0.1759 0.1634

<r 2 >30  1.8818 1.7761 1.7481 1.6320 1.6477 1.5962

<.:2> 0.1508 0.1511 0.1504 0.1497 0.1439 0.1330
<r2 >p 2.4161 2.1646 2.1712 1.9402 1.9497 1.8741

XN,02>,? I  1.08532 0.92071 0.94407 0.94193 O.94416 0.91592
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TABLE XV. Overlap Integrals between Total SCF Wave
Functions of the ni-hole States

F" Ne Na+

ZS States <T(2s-hole)I T(ls-hole)> 0.003984 0.003380 0.002876

C1" Ar K

2 p States <T(3p-hole) jI(2p-hole)> 0.009428 0.008299 0.007285

r <K(3s-hole) I (2s-hole)> 0.006062 0.005469 0.004906
ZS States j K(3 s-hole) I (1s-hole)> 0.000514 0.000486 0.000457

f. <(2s-hole)I T(Ils-hole)> 0.001264 0.001131 0.001018

D. Validity of the Exponent Variation Procedure for Excited States

The basis-function exponent variation procedure, described in

Section III, selects values of the exponents that minimize the total SCF
energy. This is a valid procedure for ground states and excited states
that are the lowest states of a symmetry species. SCF functions for
these states give stationary values of the energy that are absolute minima.
It is not known whether the SCF functions for the higher excited states
of a symmetry species give stationary values of the energy that are
relative minima or some other sort of extrema. The problem, for these
excited states, is that exponents chosen to minimize the total energy may
not give SCF functions that are optimum representations of the true
-F solutions.

If explicit variational equations, e.g., those given by Dehn,(Z6 )

were solved for the exponents of the basis functions, there would be no

difficulty with the higher excited states. In this way, stationary values
of the energy would be found with respect to variation of the exponents
as well as the linear coefficients, Cnip. However, when our exponent
variation procedure is used, a particular stationary value of the energy
with respect to variation of the exponents is found in a brute-force
fashion. This point was discussed in Section III. The particular stationary
value found is a minimum. For all the exponent variations performed to
obtain the SCF functions reported in this paper, this stationary value was
found with no more difficulty for the excited states than for the ground
states.

It seems unlikely, for an analytic-expansion SCF function of a
particular state, that there will be more than one stationary value of the
energy. It is reasonable that the solutions of variational equations for
both the Cnj,p'S and the exponents are unique. If this is true, then the
use of our exponent variation proceduie is justified.
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The procedure may also be justified from the results of the SCF
calculations. The virial theorem, which may be used as an indication of
how well the exponents of the basis functions have been optimized, is
satisfied equally well for the excited-state wave functions and the ground-
state functions. The cusp condition is also satisfied equally well for the
excited-state functions and the ground-state functions. This can be easily
confirmed by reference to Tables I-VIII. Further, as may be seen from
Table XVIII, the calculated ionization potentials, for the removal of inner-
shell electrons, agree quite well with experimental values.

The success of our method of exponent variation implies that the
total energy of analytic-expansion SCF functions, even for excited states,
is an upper bound to the exact HF energy. The results in Table XVIII
also show quite clearly that the SCF energies are, in fact, upper bounds
to the exact, nonrelativistic, total energies. According to estimates made
by Clementi,(43) the exact nonrelativistic energy is -0.4 Hartree below
the SCF energy for F-, Ne, and Na+ (Enr = ESCF - 0.4) and -0.7 Har-
tree below the SCF energy for Cl-, Ar, and K+ (Enr = ESCF - 0.7). The
calculated ionization potential IP(AESCF) is obtained by subtracting the
SCF energy of the parent from that of the ion; i.e., IP(AESCF) =
ESCF(ion) - ESCF(parent). Suppose the SCF energies of the inner-shell
hole states were not upper bounds to the exact energies. Then IP(AESCF)
for the removal of an inner-shell electron would have to be much smaller
than the true nonrelativistic ionization potential; at least 0.4 smaller for
the neon-like ions and 0.7 smaller for the argon-like ions. This is ob-
viously not the case.

E. Effect of the Off-diagonal Lagrangian Multipliers

The constraint, given in Eq. (7), that the SCF orbitals belonging
to the same symmetry species be orthogonal is incorporated by intro-
ducing off-diagonal Lagrangian multipliers into the HF equations.(2-5)

Orbitals of different symmetry are, of course, automatically orthogonal.
For closed-shell systems, a unitary transformation can be found between
the occupied orbitals that puts the matrix of Lagrangian multipliers into
diagonal form. This additional requirement that the off-diagonal
Lagrangian multipliers be zero serves, in fact, to uniquely define the
SCF orbitals. For open-shell systems, it is possible to find a unitary
transformation between the closed-shell orbitals for which the off-
diagonal Lagrangian multipliers coupling the closed shells are zero.
However, the Lagrangian multipliers that couple open and closed shells
of the same symmetry cannot be reduced to zero.(3, 4 )

In other treatments, the nonzero off-diagonal Lagrangian multi-
pliers are introduced into the HF equations as inhomogeneous terms;(16 ,29)

i.e.,

= cici + zj/ie'9i"* (15)
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Because of the difficulty of handling these additional inhomogeneous terms,
the off-diagonal Lagrangian multipliers are often treated in an approximate

way.(13,14,42) Roothaan(3,4) has shown that it is possible, through the use
of coupling operators, to absorb the terms involving the nonzero off-diagonal
multipliers into the HF operator, thus preserving the pseudoeigenvalue
form of the HF equations.

This method is especially suitable for the matrix form of the HF
equations. The matrix HF operators(4) are

Eci = H + E2 + PO,

and (16)

= H2 +P1 Qj + 2 C

where FCe and FO are closed-shell and open-shell Fock operators,
respectively, for symmetry species 2, Li is the one-electron operator,

Pj and Q2 are combinations of Coulomb and exchange operators, and
QO and Rc are the coupling operators. (The eigenvalue problem is
F! = ESc where .S is the overlap matrix.) Let the index k stand only
for closed-shell orbitals, and m only for open-shell orbitals; the coupling
operators are defined so that for self-consistent eigenvectors of FC2 and

.1Oi,

E-oi2k= Z(-em,kiCmj),

and (17)

RC2Cm = 2X(-ekmi2Cki).

The em2,k2 and '9k2,mj are the off-diagonal Lagrangian multipliers that
couple the open and closed shells; Note that they are not symmetric, but
that

No2Gki,mi = NC2em2,k2, (18)

where NC2 and NO2 are the electron occupations of the closed shells
and open shell, respectively, of symmetry 2.

The values of the nonzero off-diagonal Lagrangian multipliers
for the ni-hole states of argon and neon are given in Table XVI. These
values were computed with the accurate set SCF functions reported in
Tables I-IV. While the off-diagonal Lagrangian multipliers are fairly
small for states with open outer shells, they are more than an order of
magnitude larger for states with open inner shells. The values of the
off-diagonal Lagrangian multipliers for the n2-hole states of Cl- and K+,
and F and Na+ are similar to the values given in Table XVI for argon and
neon.
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TABLE XVI. Off-diagonal Lagrangian Multipliers for the

rd -hole States of Argon and Neon*

State Open eopen shell, closed shell

Shell

ens,ls ens,2s ens,3s

Ar+(3s-hole) 3s -0.00136 +0.01046 ....

Ar+(2s-hole) Zs +0.04518 1 . . . +0.13093

Ar+(l s-hole) is . . . . +0.72661 -0.22742

enp,2p enp,3p

Ar+(3p-hole) 3p +0.01672 ....

Ar+(2p-hole) 2p . . . . +0.24923

ens,is ens,2s

Ne+(Zs-hole) 2s +0.01644 .

Ne+(l s-hole) Is . . . . +0.37522

*The Lagrangian multipliers are not symmetric; eclosed, open =

(Nc/No) eopen, closed, where N € and N o are the electron occu-
pations of the closed and open shells, respectively.

The most striking effect of the inclusion of the off-diagonal
Lagrangian multipliers is that the Is orbitals, of the Is-hole states of
CI-, Ar, and K+, have a node. In each of these cases, Pjs(r) goes
through zero and reaches a minimum value of -0.003. For example,
PIs(r) for Ar+ (is-hole) is zero for r = 0.93 Bohr and has a minimum
of -0.0028 for 1.30 - r 1 1.45. For large r, the HF equation for P1 s(r)
becomes

CIsPIS(r) -- -e 2 s, 1 sPZS(r) - e3s,1sP3s(r). (19)

For Ar+ (Is-hole), when the values in Tables III and XVI are used,
Eq. (19) becomes

P1 s(r) s +0.01142PZs(r) - 0.00357P 3s(r), (20)

and the second term is dominant since the 2s radial function goes to zero
much before the 3s radial function does. For r _> 1.2 Bohrs, Pjs(r) cal-
culated from Eq. (20), using the accurate-set Zs and 3s radial functions,
agrees with the accurate-set analytic SCF Is radial function to within
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0.00006. The error is always less than 3%; this is remarkably good agree-
ment, especially since the analytic expansion method does not give exact
solutions of the integro-differential HF equations.

The dominant terms, in the HF equations, that determine the be-
havior of inner-shell orbitals at large r are the nonzero off-diagonal
Lagrangian multipliers with the outer-shell orbitals. With the exception
of e1 s, 3s for the ls-hole and 3s-hole states of Cl-, Ar, and K+, the off-
diagonal Lagrangian multipliers, for the states reported in this paper, are
positive. The effect of the positive off-diagonal Lagrangian multipliers is
to extend the tails of the orbitals rather than to introduce additional nodes.

The signs of the off-diagonal Lagrangian multipliers are determined
by the sign conventions used for the SCF orbitals, The signs of the orbitals
have been chosen so that the Is, 3s, and 2p radial functions are positive
as r -* 0, and the Zs and 3p radial functions are negative as r - 0. Be-
cause of this choice, the values of PnI(r) in the (n - 2)th loop, usually the
outermost loop of the orbital, will be positive. This is a departure from
the convention usually used in numerical HF calculations,(1 6 ,32-35)
which is that all radial functions are positive as r - 0.

The negative value of e3s,I s should introduce a node into the ls
orbital of the 3s-hole states. However, the maximum value of Pjs(r) in
the outer loop would be only -0.00001. This is beyond the accuracy of the
present calculation and too small to be of any interest.

To get further insight into the importance of the off-diagonal
Lagrangian multipliers, an approximate treatment was developed. The
matrices Rol and KC were arbitrarily set equal to zero, and "self-
consistent" solutions using the operators,

= +

and (21)

=e =  + -

rather than FC ' and FOl of Eq. (16), were obtained. The occupied open-
shell eigenvector of FO is not orthogonal to the occupied closed-shell
eigenvectors of Fbj. Since the operators of Eqs. (16) and (Z1) are assumed
to be constructed from an orthogonal set of orbitals, the open-shell eigen-
vector was Schmidt-orthogonalized to the closed-shell eigenvectors. This
Schmidt orthogonalization does not change the total determinantal wave
function. A "self-consistent" solution was obtained when the Schmidt-
orthogonalized eigenvectors of F61 and ~ C were the same, within con-
vergence thresholds, as the orthogonal vectors used to construct the
operators F', and C of Eq. (21).
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Since this method neglects the off-diagonal Lagrangian multipliers
in constructing the operators FnO and FCe, "lself -consistent" solutions
obtained, using E61 and I, are denoted by NLM (Neglect Lagrangian
Multipliers) to distinguish them from the SCF solutions obtained using
the operators of Eq. (16).

NLM calculations were performed, using the accurate basis sets
of Tables I and III, for the ni-hole states of argon and neon. The results
of these calculations are given in Table XVII" The NLM calculations were
performed on the I1M 704 and are compared with SCF calculations also
performed on the 704. The values of E(SCF) and V/T(SCF) given in
Table XVII differ slightly, because of round-off, from the values given in
Tables I-IV. Values of the total energy E (in Hartrees), V/T, and the
overlap integrals Sn1,n'2 between the occupied eigenvector of ZO'L and
the occupied eigenvectors of ~C are given. The signs of the Sni,ng
are determined by the sign conventions stated above for the SCF orbitals.

The NLM results for states with outer-shell vacancies are al-
most the same as the SCF results, and the Sni,ni are quite small.
However, for the states with inner-shell vacancies, where the off-diagonal
Lagrangian multipliers are large, the NLM results are quite different
from the SCF results, and the SnL,nli are large.

F. Comparison of SCF Ionization Potentials with Experiment

Experimental data are available for most of the ionization po-
tentials (IP's) of the closed-shell systems of F-, Ne, Na+, Cl-, Ar,
and K+. This includes the IP's for the removal of an electron from
any occupied shell. A comparison with experiment of IP's calculated
from the SCF wave functions is presented in Table XVIII. The IP for
the removal of an outer-shell electron (3s or 3p shell of the argon-like
ions, and 2s or Zp shell of the neon-like ions) can usually be determined
from Moore's optical data.(31) The electron affinities of F- and C1-
(i.e., the 2p-hole IP of F-, and the 3p-hole IP of Cl-) have been de-
termined very accurately by Berry, Reimann, and Spokes.(43,44) The
only state for which experimental data do not seem to be available is
the 3s-hole state of C1-; but Varsavsky(45) reports an estimate made
by Rohrlich of the term value of this state.

The IP for the removal of an inner-shell electron can be calcu-
lated from the experimental values of the energies of X-ray emission
lines, combined with the IP for the removal of the appropriate outer-shell
electron. For example, for the argon-like ions, the IP for the removal
of a Is electron is
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TABLE ,IM Comparison of SCF and Experimental Ionization potentials for the ni-hole States of F, No. Wa, C1-, Ar, and K+

lenergles are In lHrtra; I Nortree -27.20M8eV - 2.194746 x 105 cm-1t

state 1Pteopla rPlnr(s IPI-Ent) Ilppb - IpI-en04) IP)6ESCF) iplexp~b - IPIAESCF)
F-c'd 0,1273 .... 0.1810 -0.0537 0.0501 +0.0772

H-.461 IV) (+2.101 WV

2p-hole 1s22s22p3  Ned 0.7937 . . . . 0.8503 -0.0566 0.7293 +0.0644
H-1540 eV) M+.752 eV)

Na~d 1.7404 . . . . 1.7972 -0.0568 1.6796 +0.0608
H-.546 eV) M+.654 eV)

F-cC 0.8%67 .... 1.0746 -0.1799 0.9282 -0.0335
(-4.895 eV) (40912 eV)

2s-hole 1s
2
2s2p

6  Ned 1.7814 .... 1.9303 -0.1489 1.8123 -0.0309
(-4052 eV) (-0841 eV)

Ned
4  

2.9433 . . . . 3.0737 -0.1304 2.9682 -0.0249
(-3548 eV) (-0.678 eV)

F0 24.991 f 24.967 25.02M -0.063 24.9353 +0.032
(-23.48 eV) 1+0.87 eV)

Is-hole Is2s
22p6  

Nee 31.970f 31.9459 32.7723 -0.827 31.9214 44
31.91149 (-22.50 eV) 1+0.65 IV)

We ~ 39.9Wq 39.938 40.7597 -0.822 39.9345 +.D
(-22.37 W (+0.08 eV)

CIcd0.1341 .... 0.1502 -0.0161 0.0948 +0.0393
(-0430 eV) M+.069eIV)

3p-hole ts
2
2s22p

63s
2
3p5 Ar4  0,5813 . . . . 0.5909 -0.0396 0.543D +0.0383

(-0.261 ev) M+.042 eV)

K+d1.1726 . . . . 1.1705 +0.0021 1.1260 +00466
(+0.057 IV) (01.268 eVI

Cl-c~h 0.526(4 .... 0.7332 -. 0 .61-.3

3s-hole 1s22s22p63O~p Ard 1.0745 . . 1.2773 -0.2028 1.2198 -0.1453
(-5.518 eV) (-3.954 eV)

Kd1.764 . . . . 1.938 -0.1994 1.9136 -0.1492
(-5.426 ev1 (-4.060 IV)

2pj 7.2D'

Cre 7.( 7.22~' 7.6956 -0.468 7,2420 -0.0142pl/2  7.2791 H2.7 (V -0.38 eV)

2P3/2  9.13)l

2p-hole 1s22s22p
5
3s23p6 Ar 9.1I1J 9.142' 9.5713 -0.429 9.148400.02 p,12 9.209' (-11.67 cVi (0.2 eV)

9.261
2

P/ 1 1.306!

Ke1.0i 11.315 1 11.7391 -0.423 11.3342 -0.019
2pl/2  1 1.416! H-1.51 IV( (-0.52 eV)

cr-k 9.13f? .. 10.229 . . . . 9.8114 ....

2s-holc I522s2p63s
2
3p6 Ar.... .. . . 12.3219 . . . . 11.9380.
__ +k 14.41M? . . . . 14.7090 . . . . 14.3455 ....

cre 103.5971 103. 1&1 104.5055 -1.33 103.2947 -0.11
IO,.619t?lM,n (-36.2 IV) 

1-4o eV)

is-holo s2s22p63s23p6  
Are 117.8341 117.30 118.6101 -1.31 117.4280 -0.13

I17.8359 1-35.6 IV) 1-3-5 eV)

1 13.0931
KVe 33fm 132.42 133.7521 -1.33 132.5M9 -0.17

13.% -36.2 eV) 1-4.6 Wv

80jexial is the espertasantat value of the Ionization potential. For 
2P terms. unless explicitly indicated! otherwise. the IP is given to the center of gravity of the term.

IPteNl oS ned ktmh any COWrrect hr the tINt 41Mssf the nucteas Iftn Is thw m~imnial ionization petntla corrcte for relativistic eMttet &i the
fInite am Vale nucteus The reteltlotl cerls awe made with ta Wan Wae Paris Ble. 461 and Scharr 1 j!. O. 411. For discussion of the
relativWsl cornections. soa the text.6SCF values are compared with IPtexp) unless a value of IP~nr) is given; in the latter case, comparisons are made with IPinrl.

cEsprimental dala for the electron aftinity o0 F- and Clr are from Berry and.Reimann lRet. 43).
dExparlmental data are from Vol. I by Moore (Ref. 31) and correction for ~P separation of the 3p-hole slate of Ct- in Vol. MI.
$Ionization, potentials are obtained by combining (ho ionization potentials for the outer-shell vacancy states with experimental date on X-ray emission lines. For
the Is-hole slates 00 argon and non, measurements 00 the K absorption edge are also used. For sources of X-ray dat, sea tent.

!Experimental Ionization potential are obtained from the relation IPlIs-hole) AElKal) + IP(2s-hole; 2P3,7.
9 absorption eile Is as measured by Brogren M~et. 49).

hEstio.Jtef 00th 35-hole term value is given by Varsavsky MOe. 45).
Ilfxparimental Ionization potentil Is obtained from the relation 1PUP-hole; 2p3/lp 12 -hEIK9I 2) + MIKI) # IP(3p-hole; 2 P/2.
Jixperimntal ionization potential Is obtained from the relation IP-hole; 2P,71/) MlEi,71 + IPt~s-holel.
kThe experimental Ionization potential Is obtained from a Wkbt 00 normal energy leIs of alcems; Table 131460 of andolt-Blhrnstein lRel. 48). A correction is added to
account for the fact that the zero of energy of a free alem Is not the seme as that used In the Landolt-SInstein table. The correction for V~ is +056 llartree,
Yndfor CI- Is -0.17 ltertree.
kaperimte ltoiation potential is oaintam O w relation I1 11s-hole) -U~ AE01 IPtV-hoe 2pW.
~m~ ate Ionhzation patntla is oblained frm the relatio Ilts-hete) - tAR l) + AEU + IPts-helel.
lSEpermiontal ionlzat~ potential is obtained from te relation Mlts-hetel- A!Eft + 941.71)l tlffs-holel.
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IP(ls-hole, 2S 12) = IP(3p-hole, zP 3/2 ) + AE(KI)

= IP(3s-hole, 2S/z) + AE(LA) + AE(Ka1 )

= IP(3s-hole, 2S 1/Z) + ALE(L)) + AE(Kaz), (22)

where the configuration and level of the final state of the ion are given in
parentheses after IP, and AE(KA,), AE(Kaj), etc., are the energies of the
X-ray emission lines K1 1i, Kc , etc., respectively. Standard X-ray notation
is used to describe the emission lines; KAI, Kct 1 , and K02 denote the
transitions is-hole, 25/7 -* 3p-hole, 2P 3/2 (KMI11 ), Is-hole, 2S1/2 - Zp-hole,
2P 3/ 2(KLI), and is-hole, ?S,1 -. '2p-hole, 2P,/ 2 (KLI), respectively; and Ll
and LT) denote the transitions 2p-hole, 2P 3/2 -- 3s-hole, 2Sj/(LI1IMI) and
2p-hole, 2P1 /2 -- 3s-hole, ZS1/z(LIIMI), respectively. For the is-hole IP of

neon and argon, the K absorption limits (Is -* -) of gaseous neon and
argon, determined by Brogren,(49) may also be used. (We have used ab-
sorption limit here in the same sense as series limit is used for optical
spectra; that is, the removal of the electron to infinity with zero kinetic
energy.)

Except for the inert gases, argon and neon, the X-ray measurements
used have not been on free atomic systems. The emission lines used to
calculate IP's for the removal of inner-shell electrons were obtained from
the emission spectra of atoms in crystals. The wavelength and shape of
these lines will, of course, be affected by the chemical structure of the
solids. The lines involving the outermost shells of the atom will be most
affected. This chemical effect, for the systems considered here, appears
to be small and about the same order of magnitude as the accuracy of the
experimental measurements. For example, the full width at half-maximum
of the K9 1 ,3 line of C1- in KCl, with no correction made for the unre-
solved doublet KMII and KMIII, has been experimentally determined by
Deslattes(50) to be 1.00 ± 0.05 eV. Deslattes estimates that 0.4 eV =
0.015 Hartree of this width is attributable to solid-state effects (i.e., the
band structure of the 3p band of CI-). This is to be compared with the
wavelength of the line, as measured by Valasek,(51) which is 4394.91 _
0.14 XU = 103.464 ± 0.003 Hartrees. [The conversion from XU's to
A's, as given in Sections 13 and 68 of Sandstr6m's review article,(52) is
1000 XU = (1.00202 ± 0.00002) A.] The wavelength shift of the KAI (or
K 3, 3) line of CI- as measured in various substances is also small.
Valasek(51,53) gives 4394.90 ± 0.07 XU for CI" in NaC, 4394.91 ± 0.14 XU
for C1- in KC1, and 4394.61 XU for CI" in CaCl2 . The results of an
earlier measurement of the KAI line of CI- in the same substances, given
by Lindh and Lundquist,(54) are 4394.2 XU, 4394.1 XU, and 4394.2 XU,
respectively.

In several cases, the results of more than one measurement of the
same line were available. Our choice of which result to use was generally
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guided by the choices made by Sandstr6m* and Landolt-Bornstein(48) for
their compilations of X-ray emission lines. When measurements were
made for an atom in several compounds, the values for the atom in an
alkali halide compound were usually used. The sources of the experimental
data for the X-ray emission lines used are the following: F-, K%,z
Tyre"n;(55) Ne, Ka 1,z Moore and Chalklin;(56) Na+, Ka,, 2 Johnson;( 5 7)
CI-, Kl and Kaz Shearer;(58) KAI Valasek;(5 1 ) LT7 and L. Siegbahn
and Magnusson;(59) Ar, Kal, Kcaz, and KAI Lindh and Nilsson;(6 0) LT) and
Ll Baekovskr and Dolejvek;( 6 1) K+, K, Siegbahn and DolejSek;(6 Z)
Ka2 Sandstrbm;* K, Parrat and Jossem;( 6 3) and LT) and Ll Tyren.(64)

Unfortunately, the method described above cannot be used to de-
termine the IP for removal of a Zs electron from the argon-like ions.
According to Sandstr6m* and Landolt-Bornstein,(48) no X-ray emission
lines are observed that involve transitions from the Zs-hole state for
atoms between chromium and sulfur.

Landolt-Bornstein(48) give a table of the normal energy levels of
atoms in which they include values for the Zs-hole (LI) levels of
chlorine and potassium. The levels in this table were determined using
a combination of X-ray emission lines and absorption limits. The proce-
dure for determining the levels is much like that discussed above, except
that X-ray absorption limits of atoms in crystals, rather than optical
series limits of free atoms, are used. The valles given for-the Zs-hole
states of chlorine and potassium were not obtained directly from ex-
perimental data; they are interpolations made by Tomboulian and Cady.( 6 5)
The interpolation was based on rules for the LI-LI (Zs-hole, sI/ -

Zp-hole, Zl2 /2 ) screening -doublet splitting.

The levels in the Landolt-Bornstein table may not be used directly
as IP's of free atoms because the zero of energy chosen for the atom in
the crystal is not the same as the zero of energy of the free atom.( 6 6 )

The correction for the Zs-hole IP that must be made to account
for the different zeros of energy was determined by comparing the
normal energy level given by Landolt-Bornstein for the 2p-hole,
2P 1/z(LIi) state with the IP obtained as described above. The Zs-hole
experimental IP's, .IP(exp), of Cl- and K+ given in Table XVIII are
the Landolt- Bornstein values, with the corrections -0.17 and +0.56 Har-
tree, espectively. These values are included only to give a rough indica-
tion of the experimental values.

When the experimental IP's are compared with the IP's obtained
from the SCF wave functions, the experimental values should be corrected
for relativistic effects. The SCF functions were calculated using a

*See Ref. 52, Section 53. See also the discussion of the accuracy of
measurements of K-ray emission spectra in Sections 50-52 in
Ref. 52.
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nonrelativistic, electrostatic Hamiltonian. The total experimental energy
of a system Eexp may be written as

Eexp Enr + Erel, (23)

where Enr is the exact energy eigenvalue of the Hamiltonian of Eq. (10),
and Erel is the relativistic correction to the total energy. (To be precise,
the reduced mass of the electron should be used in the nonrelativistic
Hamiltonian, and mass-polarization corrections should be included in
Erel.) Then the nonrelativistic IP, IP(nr), is

IP(nr) = Enr(ion) - Enr(parent) = IP(exp) - AIP(rel), (24)

and

AIP(rel) = Erel(ion) - Erel(parent), (25)

where AIP(rel) is the relativistic correction to IP(exp). The term ion is
used here to refer to the system after an electron has been removed from
the parent.

For the Is-hole IP of an atom, AIP(rel) is assumed to be equal to
the relativistic correction to the IP of the two-electron ion of that atom
(P for 1s Z to lsl). Pekeris,(46 ) using his extremely accurate nonrela-
tivistic wave functions, has calculated the relativistic corrections to the
IP's of the two-electron ions of hydrogen through neon. His calculations
include the mass polarization correction, relativistic corrections to order

z, and the Lamb shift corrections to order a . Scherr and Silverman,( 6 7)

using an expansion in powers of Z -1 , have extrapolated Pekeris's calcu-
lations to calcium (Z = Z0). The results of Pekeris and Scherr and Silver-
man have been used for AIP(rel) for the Is-hole IP's.

For the Zp-hole IP of an argon-like ion, &IP(rel) is assumed to be
equal to the relativistic correction to the IP of the ten-electron ion (IP for
Is 2 sZ2 p 6 to Is 22s 22p 5 ). Scherr, Silverman, and Matsen(47) have calculated
these corrections using screened nuclear charges to evaluate the Dirac
one-electron energy and the one-electron Lamb shift to order t3.

For the Zp-hole IP's of the neon-like ions and the 3p-hole IP's
of the argon-like ions, the only relativistic correction made is that
IP(exp) in Table XVIII is given for the center of gravity of the ZP term
of the ion. No relativistic corrections are given for the Zs-hole IP's of
the neon-like ions and the Zs- and 3s-hole IP's of the argon-like ions.

In several cases, IP(exp), given in Table XVIII, is determined in
more than one way; this is done to indicate roughly the reliability of the
experimental data. When the different ways give different values of
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IP(nr), the method used to obtain IP(nr) is indicated. A correction for
the finite mass of the nucleus is included in IP(nr), but not in IP(exp).
This correction affects the values of IP(exp) and IP(nr) by no more than
two units in the last place given.

The IP of a system can be calculated in two ways from SCF wave
functions. One way is to use the frozen-orbital approximation. In the
frozen-orbital approximation, an SCF calculation is performed for the
parent system, and the SCF orbitals of the parent are also used as the
orbitals of the ion. In this approximation, the IP for the removal of an
electron from the ni-shell of a closed-shell system2 is -Gni; this re-
sult is known as Koopmans's theorem. The second way is to perform
separate SCF calculations for the parent and the ion. In this case, the
IP is the difference of the SQF energies AESCF of the two systems.

The accurate-set SCF functions of Tables I-IV have been used to cal-

culate the IP in these two ways. The results, IP(-E ni) and IP(AESCF),
are given in Table XVIII together with their differences with IP(exp),
or with IP(nr) when IP(nr) is given.

The true value of a quantity, in the sense that it is used in the
following discussion, is the exact nonrelativistic value obtained from
solutions of the Hamiltonian of Eq. (10). The error of an approximate
value of a quantity is the error with respect to this true value. *The
values of IP(exp) or IP(nr) given in Table XVIII are taken to be good
approximations to the true IP's. The choice of IP(exp) or IP(nr) de-
pends, of course, on whether the electron has been removed from an
inner or outer shell of the parent.

The data in Table XVIII show that when an electron is removed from
the outermost shell (2p shell of the neon-like ions, and 3p shell of the
argon-like ions), IP(-Cni) is a better approximation than IP(AESCF) to the
true IP. The frozen-orbital wave function for the ion is always a poorer
approximation than the SCF wave function to the true wave function of
the ion. For the lowest state of a symmetry species, the error in the
energy of the ion in the frozen-orbital approximation must be larger
than the correlation energy of the ion (the error of the SCF energy of
the ion). However, in the cases mentioned above, the correlation energy
of the parent is more nearly equal to the error in the energy of the ion
in the frozen-orbital approximation than to the correlation energy of the
ion. The errors in the energies of the parent and ion more nearly cancel,
and IP(-cni) is a better approximation than IP(AESCF) to IP(nr).

The error in the energy of the ion in the frozen-orbital approxi-
mation is usually larger than the correlation energy of the parent. Be-
cause of this, IP(-Cnj) is usually larger than the true IP. This is not
always the case; for K+, IP(-C 3p) is 0.06 eV smaller than IP(exp) for
the removal of a 3p electron.
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Note that IP(-6n1) is larger than the true IP when an inner-shell
electron has been removed. If the ion is not in the lowest state of a
symmetry species, it is not necessary that the expectation value of the
energy for an approximate wave function be an upper bound to the true
energy. If the expectation value of the energy in the frozen-orbital approx-
imation for ions in these states was not larger than the true energy, then
IP(-en2) would be considerably smaller than the true IP.

When an electron is removed from any but the outermost shell,
IP(AESCF) is a better approximation than IP(-E6n) to the true IP. When
an electron is removed from an inner shell (Is shell of the neon-like
ions, and Is, 2s, or Zp shell of the argon-like ions), the SCF orbitals
of the ion are considerably different from the SCF orbitals of the parent
(cf., <r> and <r 2> in Tables XIII and XIV). Consequently, the error in
using the orbitals of the closed-shell parent for these ions is quite large.

The SCF orbitals of the states that have a hole in the outermost
s shell are not very different from the SCF orbitals of the states with a
hole in the outermost p shell. The IP(-Eni) was a good approximation
to the IP for the removal of an outermost p electron, but not for an
outermost s electron. For these s-hole states, there is another reason
why IP(-EnA) is a poorer approximation than IP(AESCF). As discussed
in Section IV-A, these s-hole states are likely to be the lowest Zs states
of even parity of their ionic systems. The only states for which this is
at all in doubt are F(Zs-hole) and Cl(3s-hole). When the ion is the lowest
state of a symmetry species, IP(-Cni) must be greater than IP(AESCF).
Now, IP(AESCF) for the removal of an outermost s electron is already
larger than the true IP. Since IP(Cni) must be still larger, it is a poorer
approximation to the true IP. The surprising fact that IP(AESCF) is
larger than the true IP is discussed in Section G below.

The agreement of IP(AESCF) with IP(nr) for the removal of an
inner-shell electron is remarkably good. [Comparisons of IP(AESCF)
with IP(nr) for the removal of a 2s electron from an argon-like ion
cannot be made since there is no accurate experimental data available.]
The error of IP(AESCF), for these cases, is always less than 0.Z% and
often no more than 0.1%. Thus, IP(AESCF) often agrees with IP(nr)
to four significant figures.

This good agreement is due, at least in part, to the fact that the
importance of the one-electron contributions to the HF operator relative
to the two-electron contributions (the kinetic energy and nuclear attrac-
tion terms relative to the Coulomb and exchange terms), is considerably
greater for inner-shell orbitals than for outer-shell orbitals. The best
results are obtained with the HF one-electron approximation when the
two-electron terms are a small perturbation on the one-electron terms.
Since the error of the HF treatment of the outer-shell orbitals can be

51



expected to be roughly the same whether the inner-shell electron is
present or not, IP(AESCF) for the removal of an inne:--shell electron
should give reasonably good agreement with the true IP.

Thus, IP(AESCF) for the removal of a 2s electron from an
argon-like ion should be in good agreement with the true nonrelativistic
IP. The relativistic correction to these IP's, estimated from the data of
Scherr, Silverman, and Matsen,(47) is probably no more than 0.1Hartree.

Even without relativistic corrections, the values of IP(AESCF), given in
Table XVIII, should agree with the correct experimental values to within
1%; because of the relativistic corrections, they should be smaller than
the correct experimental values. No direct experimental data are available
for these Zs-hole IP's; the values of IP(exp), given in Table XVIII, were
obtained through interpolation. (65)

G. Anomalous Behavior of the Correlation Energy

The correlation energies of some of the hole-state systems have
anomalous values. The correlation energy Ecorr is the error of the total
SCF energy ESCF and is defined by the relation

Enr = ESCF + Ecorr, (26)

where Enr is the exact nonrelativistic solution of the Hamiltonian of
Eq. (10). The sign has been chosen so that Ecorr is negative for all
the systems considered here and is always negative for the lowest state
of a symmetry species. It follows immediately from Eq. (Z6) that

IP(nr) - IP(AESCF) = Ecorr(ion) - Ecorr(parent). (Z7)

The error of IP(LESCF), given in the last column of Table XVIII, is
the difference of -Ecorr between the parent and the ion.

Usually IP(AESCF) is less than the true IP. The orbitals of the
ion are not drastically different from those of the parent. The ion has one
fewer electron than the parent, and it is reasonable to expect that

IEcorr(ion)l < JEcorr(parent)I. As shown in Table XVIII, this usual case
occurs when an electron is removed from the outermost p shell of any of
tht. closed-shell systems considered.

When an electron is removed from the outermost s shell,
IP(AESCF) is larger than the true IP. The magnitude of Ecorr of
Ne+(Zs-hole) is 0.84 eV larger than the magnitude of Ecorr of neon;

lEcorrj of Ar+(3s-hole) is 3.95 eV larger than lEcorri of argon.

When an electron is removed from the 2p or the Is shell of one
of the argon-like ions, lEcorrl of the resulting ion is also larger than

IEcorr I of the parent. The uncertainties of the experimental data and
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the relativistic corrections make this conclusion somewhat doubtful for the
2p-hole states. For the Is-hole states, however, the increase of jEcorrl
is larger than these uncertainties.

This anomalous behavior of the correlation energy is extremely
important in light of the recent work of Clementi(41, 6 8) and in particular

of Allen, Clementi, and Gladney( 6 9) to obtain semiempirical rules for the
calculation of Ecorr. Such rules, if they could'be successfully applied,
would be very useful since-SCF wave functions may now be easily ob-
tained for a large class of systems. The analysis of Allen, Clementi,
and Gladney is based on a decomposition of Ecorr into pair-correlation
energies. For atoms, the pair-correlation energy is denoted by
Ecorr(n, 1,mI,ms; n', 1,ml,ms), where n,2,m2, ms are the usual one-
electron quantum numbers. Allen et al.( 6 9) explicitly make the following
three assumptions about this decomposition: (1) The total correlation

energy is, to a very good approximation, the sum of the pair-correlation

energies,

Ecorr = Z Ecorr(n,1,m2,ms; n',2',mkm ws ). (28)

(2) The most important pair-correlation energies are for electrons
which differ only in their spin quantum numbers, and these correlation

energies are independent of my; i.e., Ecorr(ni,m2,4 nolm2,) =

Ecorr(n, i, a; n, ,3). (3) The pair-correlation energy, with only minor
qualifications, is a function only of the quantum numbers of the pair of
electrons and the nuclear charge Z; in particular, it does not depend on
the total electronic configuration of the system. The third assumption
is a key one since Allen, Clementi, and Gladney obtained the pair-
correlation energies for an atom by subtracting the total correlation
energies of various ions of the atom.

The first two assumptions are quite reasonable. The anomalous
behavior of the correlation energy, discussed above, shows that the third
assumption is not correct.

From the assumptions and Eq. (27), it follows that when an electron
is removed from a closed shell with quantum numbers ni,

-Ecorr(n,lpa n,,A) S' Ecorr(ion) - Ecorr(parent) = IP(nr) - IP(16ESCF).

(29)
For neon, Allen, Clementi, and Gladney find that -Ecorr(2pa,2p 3 ) -
+1.7 eV, -Ecorr(2sa,Zsp); +3.2 eV, and -Ecorr(IsOIsA) -
+1.2 eV. The results given in Table XVIII show that Ecorr(Ne+;2p-hole) -

Ecorr(Ne) = +1.75 eV, Ecorr(Ne+;Zs-hole) - Ecorr(Ne) = -0.84 eV, and
Ecorr(Ne+;Is-hole) - Ecorr(Ne) = +0.65 eV. When a 2p electron is re-
moved, Allen, Clementi, and Gladney correctly predict the change in the
total correlation energy; this is hardly surprising since this change was
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part of the data used in their semiempirical analysis. However, when a
2s electron is removed, they predict a decrease of lEcorrll of -3.2 eV;
but, in fact, jEcorrl increases by 0.84 eV. When a Is electron is re-
moved, they predict a decrease of -1.2 eV, but there is a decrease of
only half that. Allen, Clementi, and Gladney also give pair correlations
for fluorine and sodium. Their predictions for the correlation energies
of the n-hole states of F- and Na+ are very similar to their predictions
for neon.

Clearly the values that the Allen, Clementi, and Gladney analysis
gives for Ecorr(2sa,Zsp) and Ecorr(lsac,lsp) are not correct. Kestner(70)
has considered the anomalous correlation energy of Ne+(2s-hole) using
the formalism of Sinonaglu. He claims that he has accounted for the in-
crease of IEcorri to the accuracy of his calculation.

Kestner explains that the anomalous correlation energy of the
Zs-hole state of neon is due to the increased importance of configuration
interaction for the SCF function of this state. The ls 2 2s2p 6 configuration
of the 2s-hole state of Ne+ can interact with the configurations lsz2sZep4 ns,
lszZsZp 5np, and 1s 2 2s?2 p 4nd. The configurations ls 2 2s2 2p 6 and lszzsz2 p s

of neutral neon and the 2p-hole state of neon can interact only with con-
figurations formed by exciting two electrons into orbitals with principal
quantum numbers n > 2. The energies of some of the excited configurations
that mix with the SCF configuration of the 2s-hole state of neon are closer
to the energy of that state, than the energies of the exicted configurations
for neon and Ne+(Zp-hole) are to the energies of these states. Thus, the
mixing of configurations will be larger for the Zs-hole state than for the
neutral atom or the 2p-hole state. When the effects of configuration inter-
action are more important, the SCF one-configuration function gives a
poorer approximation to the true wave function, and the magnitude of the
correlation energy is larger.

Similar arguments can be made about the 3s-hole states of the
argon-like ions. It will be interesting to see if Kestner's treatment can
account for the increase of Ecorri for these states. The increase of
lEcorri for these states is more than four times as large as the increase
of lEcorr for the Zs-hole states of the neon-like ions.
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V. TRANSITION PROBABILITIES BETWEEN
THE SCF WAVE FUNCTIONS

A. Theory

To calculate electric-dipole transition probabilities, it is necessary
to evaluate matrix elements I of the form

I I <TI Z(i) ITF>, (30)

where TVand TF are the normalized many-electron wave functions of the
initial and final states, r(i) is the position vector of the ith electron, andIthe sum is over all the electrons in the atom. In this calculation, TI and
TF are approximated by SCF wave functions. For the states considered
here, the SCF function is given by a single Slater determinant and is an
eigenfunction of I) and S?, but not j 2 . Since TI and TF were obtained as
separate SCF solutions of the variational equations, the SCF one-electron
orbitals for the two states have no special relation to each other. In par-

ticular, the overlap integrals of the orbitals 0- m of TI with the orbitals
, of Tare not zero or one; that is, <0 4 mJ4fm> n

It is common practice(45,71,72) to approximate the dipole transition
matrix element I of Eq. (30) by

I= < TlI r(i) I TF> Z W PM (r)rPnFj, (r) dr. (31)

Here PI) and p(F, are the radial wave functions of the active electron
(the electron making the transition) for the initial and final states. The
radial functions P(I) and p( F) The vec-

ni ~no it need not be SCF functions.(-he vec
tor )y includes the angular integrations and also depends on the symmetry
species and subspecies of the initial and final states. The approximation
of Eq. (31) is equivalent to assuming that the orthonormality relations

< 0y)now > = P(r) P(T2(r) dr = 6nn (32)

hold. We shall refer to this approximation as the active electron
approximation.

With SCF functions, or with any total wave functions which are ex-
pressed as combination of Slater determinants, it is not necessary to use
the active electron approximation. L~wdin(73) has given an expression for
the matrix element of a one-electron operator XO(i) between two arbitrary
Slater determinants, TU and TV . L~wdin showed that
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< UjZO(i)j v> = k: *u()O11(V()DVkl) (33)

where and (v)
where k  and ?P are spin-orbitals of the determinants T U and 'k V re-
spectivery, the double sum k, i is over all the occupied spin-orbitals, and
Duv(kIA) is the signed minor, formed by removing the kth row and ith col-
umn, of the matrix Duv. The elements of Duv are the overlap integrals

between the spin-orbitals of the two determinants; the ki element of DUV is

(Duk (U < ?() (34)

The SCF spin-orbitals were defined in Eq. (2).

The evaluation of the sum in Eq. (33) is simple because the SCF spin-
orbitals are symmetry-adapted and because there is only radial function for
each shell [cf., Eqs. (2) and (5)]. In fact, for the transitions considered, it
was never necessary to evaluate a determinant larger than 3 x 3. The dipole
transition matrix elements required for this calculation were, therefore,
evaluated by means of' Eq. (33).

The results of the dipole transition calculations will be given as
total absolute multiplet strengths S(M)IF. In the electric dipole approxima-
tion, S(M)IF is defined, in atomic units, by

S(M) IF = Z Id(LSMLMS)ri)jTF (L?,S,M, Ms)>IZ, (35)
Ms,M S MLM'J.

where L, S, ML, and MS are the usual orbital and spin angular momentum
quantum numbers for the many-electron system. The sum is over all the

states of the initial and final terms. This sum need not be evaluated ex-
plicitly; sum rules* for the sum over ML and M L , and the fact that the
operator Zr(i) does not involve the spin, may be used to reduce the sum.
For the case of interest here (transitions between ZS and zP states with
AL= 1), S(M)IF becomes

S(M)IF = (zS+1)(L+1)(ZL+3)j<T(L+I,S,ML=L,MS=S)IZz(i)I pL,S,ML=L,MS=S)>i2,

(36)

where z(i) is the z coordinate of the ith electron.

*Feenberg and Pake(74) present a complete statement and derivation

of the sum rules.
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Absolute line strengths may be obtained from S(M)IF by using the
relative strengths of lines in multiplets. Oscillator strengths and spon-
taneous transition probabilities may also be obtained from S(M)IF by using

either experimental or SCF transition energies. Summaries of current
notation and definitions of terms may be found elsewhere.(75) The general
problem of emission and absorption of radiation is treated in detail else-
where; see, for example, Bethe and Salpeter.(20)

For the sake of convenience, we give here the relations that will be
required later for the discussion of the width of the ls-hole state; this
width is referred to as the K-state width, or simply the K width.

The absolute line strength S(L)IF is defined, in atomic units, by

S(L)IF = Z I<TI((J,L,S,M.)fIZr(i) (TF(J',L',S,MJ)>I. (37)
M 3 , M!,

The subscripts I and F for S(L)IF refer to levels (i.e., ZS+lLj), while the
subscripts for S(M)IF refer to terms (i.e., 2S+1L). For the transitions of
interest here, S(L)IF is given in terms of S(M)IF by

2s 2 ---- 2 P1 2 ; S(L)IF = (1/3)S(M)IF 1
(38)

2 S1 ,2  2 . P3 /2; S(L)IF = (2/3)S(M)IF.

The transition probability for spontaneous emission of a photon AIF is
given, in sec' 1 , by

AIF 2.1419 x 1010 [(AE I )3/g 1 ] SIF(L), (39)

where AEIF =E I - EF is the energy of the line in atomic units, SIF(L) is
in atomic units, and gI is the degeneracy of the initial level.

The total width of a level I, FI , may be written as r I = hPi, where
PI is the total probability uf transitions from the level I to all lower-lying
levels. The partial width due to radiative transitions r(R), called the
radiative width, is

r(R) = I FA1F ,  (40)
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where the sum is over all levels with lower energy, EF < E1 . For inner-
shell hole states, where radiationless transitions are important, the total

width is given by

r i = rR) + r (41)

where F( A ) is called the Auger width. The fluorescence yield I the frac-
tion of the total transition rate due to radiative transitions, may be written
as

i= ((R/[R)+ F(A)] = F(R)/Ir (42)

These matters are discussed in detail elsewhere.(7 6 )

The operator Z1(i) is called the dipole length operator. It is pos-

sible, through the use of commutation relations, to find alternate expres-
sions for the dipole transition matrix element of Eq. (30). For the

many-electron Hamiltonian of Eq. (10), we have the relations

[Zr(k),SV] = i.E(k) = .V(k), (43a)

and

[Zp(k),SV] = -i[ZV(k)]9"= -iZ r(k)/r(k)3 , (43b)

where Z is the nuclear charge and the commutation relations are expressed

in atomic units. If T, and "F are exact eigenfunctions of SV, the dipole

transition matrix element I, in atomic units, may be evaluated, using

Eq. (30) or equivalently, as either

I = <TII[-I/AEIF1]V(k)ITF>, (44a)

or

I = <TI I[ Z/(AEIF)2
] Zr(k)/r(k)3 1IF>, (44b)

where LEIF = El - EF is the difference between the exact nonrelativistic
total energies of the initial and final states. The operators in Eqs. (44a) and
(44b) are called the dipole-velocity and dipole-acceleration operators, re-

spectively. Note that the dipole-acceleration operator was obtained from

the exact many-electron potential energy and not from some average one-

electron potential.

58



When a dipole transition matrix element is evaluated using ap-
proximate wave functions (e.g., SCF functions), the length, velocity, and
acceleration forms of the matrix element will not have the same value.
The values obtained using the three operators do not necessarily bound
the correct value of the matrix element. Even if the three values are in
close agreement, they are not necessarily correct. However, the main.
contributions to the matrix element come from different regions of r for
the three operators. The contributions to the value of the matrix, element
from comparatively large r are most important for the dipole length op-
erator, from intermediate values of r for the velocity operator, and from
small values of r for the acceleration operator. Thus, if the three opera-
tors give approximately equal values for a transition matrix element, it is
not unreasonable to infer that these values are close to the true value. In
any event, it is interesting to see how the results obtained using the length,
velocity, and acceleration operators compare. Such a comparison will be
made in Section B' below.

B. Results of the Dipole Transition Probability Calculations

A computer program was written for the IBM 704 to calculate all
the one-electron overlap and electric-dipole transition integrals, between
the expansion SCF orbitals of two states, needed for the evaluation of
S(M)IF. The one-electron overlap and transition integrals are defined in
Eqs. (33) and (34). Transition integrals may be computed for the dipole-
length, -velocity, and -acceleration operators. Since the angular integra-
tion follows immediately from the properties of the spherical harmonics,
only the radial portions of the transition integrals are calculated by the
program. For the transitions reported here, the program was modified
to calculate S(M)IF directly, with the electric dipole transition matrix
element evaluated exactly, as a matrix element between the many-electron
SCF wave functions. Actually, S(M)IF is calculated when the length opera-
tor is used; but (AEIF)2 S(M)IF and (AEIF)4Z' 2 S(M)IF are calculated when
the velocity and acceleration operators are used. In this way, experimental,
rather than SCF, energy differences may be used when the velocity and ac-
celeration forms of S(M)IF are evaluated.

For a given transition, the input to the transition moment program
consists of two sets of punched cards. One of these sets contains the in-
formation necessary to describe the SCF function of the initial state; the
other, the information necessary to describe the final state. While a set
of cards may be prepared manually, it is available, optionally, as part of
the output of an SCF calculation performed with the 7094 SCF program.

The values of S(M)IF, in the electric dipole approximation, for all
possible electric dipole transitions between the ni-hole states computed,
are presented in Table XIX. The matrix elements- were computed exactly,
between many-electron SCF wave functions, using the expression of
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Eq. (33). The matrix elements were evaluated using the dipole-length
operator. The SCF functions used are the accurate-set functions reported
in Tables I-IV. The values of S(M)IF are given in atomic units.

TABLE XIX. Total Absolute Multiplet Strengths S(M)IF for Transitions
between the ni-hole States of F-, Ne, Na + , C-, Ar, and K+

(Values of S(M)IF are in a.u.)

F Ne+ Na++

2s-hole -* 2p-hole
ultraviolet emission line 2.0652 1.4632 1.0855

Is-hole - 2p-hole
Ka emission line 0.02466 0.02193 0.01937

Cl Ar+ K++

3s-hole - 3p-hole
ultraviolet emission line 5.3584 4.1392 3.2995

2p-hole -- 3s-hole
L1,7) emission lines 0.03430 0.02808 0.02324

2s-hole - 3p-hole
not observed 0.02932 0.02991 0.02965

2s-hole - 2p-hole
not observed 0.3382 0.2923 0.2549

Is-hole -- 3p-hole
K emission line 0.0006722 0.0007010 0.0007078

Is-hole -" 2p-hole
Ka emission line 0.009245 0.008354 0.007588

For most of the transitions given in Table XIX, S(M)IF, for a given
transition, decreases with increasing Z. Along an isoelectronic sequence,
the wave functions for a given state become more contracted as the nuclear
charge increases (cf., <r> and <r2> given in Tables XIII and XIV). Thus,
the main contributions to the dipole transition matrix element < Y I i (i) I
TF > come from smaller values of r for larger values of Z, and S(M)IF

becomes smaller with increasing Z. In fact, for the hydrogenic one-
electron ions, S(M)IF goes as 1/ZZ.

For the is-hole -. 3p-hole and the 2s-hole -- 3p-hole transitions of
Cl, Ar+, and K++, however, S(M)IF does not have this behavior; for the
Is-hole - 3p-hole transition, S(MIF increases with increasing Z. Although
all the SCF orbitals of a gi, en state contract with increasing, Z, the
3p orbitals contract more than the Is or 2s orbitals. The region of
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important "overlap," the region where T *F is large, will increase, and,
in some cases, this increase will be more important than the fact that the
"overlap" occurs in a region of smaller r. As Z becomes larger, the
contraction with increasing Z, of all the orbitals of a given state, becomes
more nearly the same. For large enough Z, S(M)IF for any transition
should decrease with increasing Z along an isoelectronic sequence;
S(M)zs.hole,sp-hole is smaller for K++ than for Ar + , and it is likely that
S(M)is.hole, 3p.-hole will be smaller for Ca+3 than for K++.

For transitions between the ni-hole states of neon and argon,
Table XX compares the effects, on S(M)IF, of the use of several different
approximations for the evaluation of the dipole transition matrix element.
The results for these transitions are very similar to the results for the
transitions of the other atoms. The values of S(M)IF are given for the
dipole length, velocity, and acceleration operators defined by Eqs. (30) and
(44). For each operator, the transition matrix element was evaluated using
the many-electron expression of Eq. (33), and also using the active-electron
approximation of Eq. (31).

The notation < (ns-hole)0 O1(n'p-hole)> is used in Table XX to
indicate that the matrix element for S(M)ns.hole,nlp.hole was evaluated
between many-electron SCF wave functions. In the active-electron ap-
proximation,

60 (ns'hole) I 1,n'p-hole)>2 (45
S(M)ns hole,n'p-hole = 6  nlep,m=o ,znspm=0 -) , (45)

where

0 (1) =z,

0(v) -(1/AEIF)

and

O =: [Z/(AEiF)z][z/r ]. (46)

The notation <00), _,F),> is used in Table XX to indicate that the matrix
element for S(M)IF was evaluated using the active-electron approximation;
for simplicity, the subscript m for the symmetry subspecies is not used.
Matrix elements were evaluated in the active-electron approximation in two
ways: first, using the appropriate orbitals from the SCF wave functions for
the initial and final states of the transition, as indicated in Eq. (45); and
second, using the orbitals from the SCF wave function for the closed-shell
system, either neutral neon or argon.
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TABLE XX. Total Absolute Mhltiplat Strengths S(M)j Using Several Approimations for the
Dipole Transitton Matrix Element (I(M)IF and AEir are in a.u.]

Operator

Approximation for
raslsition Natrix gl@snt length Velocity Diff.* Acceleration DIf.

(y(2s-hoe)O Iy(2p-hole)> 1.463 1.166 20.3%

N + ; 2 -h o l e -. 2 p - 8ol e I(2 s h o I *) j ~ j_ ( 2 .h o 1 *) >
<92p vi2s 1.465 1.181 . . . -'150....

2 .9877 > 1.630 1.282

<V(ls-hole)O[ j(2p-hole)> 0.02193 0.01979 9.8$ 0.02252 2.7%
Ne+; la-hole - 2p-hole <,( 1s-ho~e) , (2P - ho1e)>

-p 39.151 2i p ,e 0.02119 0.0 • . • 0.02355

02p X Is 0.01549 0.01415 . . . 0.01184 . . .

<%(3e-hboe)2O1y(3P-bole)> 1.139 4.791 15;8%

Ar
4.
; 3m-bole.. 3p-bole <.(3._hol.)j,(3p-_ol' )I

&ZIP - 0.4932 3P 38 > 4.143 4.798 .300.

03 ~ 21132 > 4.46 4.77 .. .

<1(2p-hole)l°lV(3s-o1e)> 0.02806 0.02150 23.% wrong s . . .

At+; 2p-hole- 3s-hole ,(2Pho1e)li(3s-hole)

-Z 
= 
8.067 (935 '2p > 0.02492 0.02222 . . . 0.000003  . . .

<9 (Ar) ol(At)>
34 , ' 2p 0 0.01981 0.01835 . . . wrong sign*

<f(2s-hole)loly(3P-hole)> 0.02991 0.02413 19.% 0.0156 64.7%

Ar; 2-hole. 3p-hole <,(2eshole),(3p-oie) 0

&RIF " 11.357 3P '2"2e > 0.83 0.0 7 • . . 0.01213
<CP(Ar) O,(Ar)

3 12 0.0195 0.01701 . . . 0.00562 . . .

(9(2s-hole) lO [ (2p-hole)> 0.2923 0.2079 28.9% 1
Ar+; 2s-hole - 2p-hole 1.(2 -h hol°) 0. 5 .

49IF , 2.796 p e 0 2e a 0.282 0.2 .... .

<q A~ol(r> 0.2967 0.2262 . . .

<V(le-hoe)Ol (3p-hole)> 0.0007010 0.0006519 7.0% O.0007061 0.7%

Ar ; la-bole -. 3p-hole <(la-hole), 4(3-oe> 0.0005358 0.0005133 . . . 0.0006001 ...
A ir 116.72 3P ".

93p)2,lAr> 0.0001223 0.0001011 . . . 0.0(1011118 ...

Y(I-hole) IOI (2P-ble)> 0.0035 0.008003 .2% 0.008683 3.0

A+; la-hole - 2p-hole <9(,-hole)12b(ohele) 0.00870 0.00837 . . . 0.009082

ai,- z06.16 2 0 1 ,2Pis le>(r,,Ar>.OTc OOP28 ... 007b.. .

*This ,s the percent difference between S(M)IF evaluated using the length operator, and S(M)Lj evaluated using the
velocity or acceleration operator.

"eThe sign of the transition matrix element for the acceleration operator to not the same as the sign of the matrix
element for the length operator.
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The second case (the use of the SCF orbitals of a single state for
the wave functions of both the initial and final states of a transition) may
be regarded as a frozen-orbital approximation for S(M)IF. It is, in a sense,
similar to the use of Koopmans's Theorem for the IP of a system. In this
case, the active-electron approximation gives the correct value for the
transition matrix element since the orthonormality conditions 4 1 =
6n, n , are satisfied. nim n im

In Table XX, the superscript on the 0 indicates the state for which
the orbital was computed. The entry "wrong sign" in the table means that
the sign of the transition matrix element for the acceleration operator was
not the same as the sign for the length operator; for exact eigenfunctions,
the signs must be the same.

The nonrelativistic energy differences AEIF were obtained by taking
differences of the IP's given in Table XVIII; IP(exp) was used for the 3p- and
3s-hole states of the argon-like ions, and the 2p- and 2s-hole states of the
neon-like ions; IP(nr) was used for the 2p-hole states of the argon-like
ions, and for all the Is-hole states; and IP(AESCF) was used for the 2s-
hole states of the argon-like ions.

The calculations were performed using the accurate-set SCF func-
tions given in Tables I-IV. The values of S(M)IF and AEIF are given in
atomic units. The column labeled "Diff."i is the difference between
S(M)I F evaluated using the dipole-length operator, and S(M)IF evaluated
using the dipole-velocity or -acceleration operator. This difference is
only given when the dipole matrix elements for S(M)IF have been computed
between the many-electron SCF wave functions.

For all but one of the transitions given in Table XX, the dipole-
length form of S(M)IF obtained using the orbitals of the closed-shell
system (third line and first column for each transition) gives a signif-
icantly poorer result than that obtained using the orbitals for the initial
and final states of the transition (first and second lines and first column
for each transition). For the 3s-hole " 3p-hole transition of Ar+, the
improvement is 87o; for the is-hole - 3p-hole transition of Ar+, the im-
provement is 40%. Only for the 2s-hole - 2p-hole transition of Ar + is
the improvement as small as 1.5%.

For the dipole-velocity form of S(M)IF, the frozen-orbital ap-
proximation sometimes gives a better result than the use of the SCF func-
tions of the initial and final states of the transition. Here, we mean better
in the sense of being more nearly equal to the dipole-length value of
S(M)IF with the many-electron matrix element correctly evaluated. Hcw-
ever, the agreement in these cases between the length and velocity forms
of S(M)IF is not very good, and the better result of the frozen-orbital ap-
proximation does not have much meaning.
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It seems, from the results given in Table XX, that the use of the
SCF functions of the initial and final states of a transition gives a sig-
nificantly better value for S(M)IF than the use of the frozen-orbital
approximation.

In several cases, the value of S(M)I F obtained when the dipole
transition matrix element is evaluated between total many-electron wave
functions is quite different from the value obtained when the active-
electron approximation is used. The difference is largest for transitions
between the is-hole and the outermost p-hole states; it is smallest, and
quite negligible, for transitions between the outermost s-hole and outer-
most p-hole states. The value of the many-electron matrix element cannot
be much different from the active-electron approximation value unless the
minors DIF(k12), defined in Eqs. (33) and (14), are considerably different
from one or zero. This condition is met for the former transitions, but
not for the latter, where the orbitals of the initial and final states are too
similar.

Note that the value of S(M)I F obtained using the many-electron ex-
pression for the matrix element is often larger than that obtained using the
active-electron approximation. It has been suggested(77,78) that the correct
evaluation of the matrix element simply corrects the active-electron approx-
imation for overlap effects. If this were true, then the many-electron ex-
pression for the matrix element would always give a smaller result than
the active-electron approximation since overlap effects always introduce
a factor less than one. In several cases, transition integrals between or-
bitals other than the transition integral of the active-electron approximation
must make significant contributions to the value of the matrix element. The
best example of this is the I s-hole - 3p-hole transition of Ar + , where the
value of dipole length form of S(M)IF using the many-electron matrix ele-
ment is 30%0 larger than value in the active electron approximation.

In discussing the use of the length, velocity, and acceleration forms
of the dipole matrix element, we will consider only the cases where the
matrix element is evaluated between the many-electron SCF functions of
the initial and final states. That is, of the values of S(M)IF in Table XX,
only the values in the first row of each transition will be compared.

The values of the length and velocity forms of S(M)1 F are always at
least in reasonable, if not necessarily good, agreement. In the worst case,
the 2s-hole -- 2p-hole transition of Ar+, the velocity form of S(M)IF is
30% smaller than the length form.

The acceleration form of S(M)IF often has absurd values. For sev-
eral transitions, the acceleration form of S(M)IF is larger than the length
and velocity forms by a factor of between 100 and 1000; and for one transi-
tion, the sign of the acceleration form of the matrix element, Eq. (44b), is
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different from the signs of the length and velocity forms of the matrix'element,
Eqs. (30) and (44a). However, for transitions from I s-hole states, the ac-
celeration form of S(M)IF is in good agreement with the length and velocity
forms. For the 1 s-hole -* 2p-hole transition of Ne+ and the- I s-hole -- 3p-
hole transition of Ar+, the difference between the length and acceleration
forms of S(M)IF is, in fact, less than the difference between the length and
velocity forms.

When the agreement between the length and acceleration forms of
S(M)IF is good, the important one-electron transition integrals are between
orbitals with simple structure. The orbitals involved either have no radial
nodes (i.e., Is and Zp), or the contribution to the value of the integral from
the region around and past the radial node is small (i.e., Is and 3p). When
the important, one-electron transition integrals are between orbitals whose
nodal structure is important in determining the value of the integral, the

acceleration form of S(M)IF has poor values.

For transitions between outer-shell hole states, one might consider
using some screened, effective, nuclear charge, Zeff, for the acceleration
form of the dipole transition matrix element. In place of Eq. (44b), the
expression

I <T II[Zeff/(AEIF)']Zr(k)/r(k)3 I yF> (47)

would be used. For the 3s-hole -* 3p-hole transition of Ar+, Zeff = 0.7
would be required to bring the length and acceleration forms of S(M)IF into
agreement; for the Zs-hole - 2p-hole transition of Ne+, Zeff = 1 would be
required. However, a reasonable value of Zeff for these cases, based on
arguments about the screening of the nuclear charge by the electron charge
distribution (e.g., Slater's rules), must be Zeff > 2. Thus, even the use of
a Zeff will not give good values for the acceleration form of S(M)IF.

The length form of the dipole transition matrix element has the
advantage of being less sensitive than the velocity or acceleration forms
to the precise shape of the approximate wave functions. The velocity op-
erator involves derivatives of the orbitals, and the acceleration operator
varies strongly and weighs different regions of r very differently. From
these considerations, it would seem best to use the length form of the

matrix element to evaluate S(M)IF.

Chandrasekhar(79) has pointed out that larger values of r are more
important for the evaluation of the length form of the dipole matrix element
than for the evaluation of the total energy; conversely, smaller values of
r are more important for the evaluation of the acceleration form of the
matrix element than for the evaluation of the energy. Thus, Chandrasekhar

suggests that the velocity form of the matrix element is the most suitable
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form when the wave functions used have been obtained from an application
of the variational principle.

He used the three forms of the matrix element for the calculation
of transitions from the ground state to continuum states of the H- ion.
The use of the velocity form of the matrix element did, indeed, give better
results. But, 6- and 12-term Hylleraas-type functions were used for the
ground-state wave function of H-. These functions are considerably more
accurate than HF functions, and the conclusion above may not apply when
HF wave functions are used to evaluate the transition matrix elements.

Weiss(80) has calculated oscillator strengths for several transitions
of helium. He compared the results, for both the length and velocity forms
of the matrix element, obtained by using HF functions and by using the more
accurate Hylleraas-type functions. For all but three of these transitions,
when HF wave functions were used, the value obtained with the length form
of the matrix element was more accurate than that obtained with the veloc-
ity form. For two transitions, the use of the velocity form of the matrix
element gave very poor results, while the results obtained with the length
form were quite accurate. In the three cases in which the use of the ve-
locity form of the matrix element gave better results, both the length and
velocity forms gave good results; in these cases, the largest difference
between the results obtained using the length and velocity forms with the
HF wave functions was less than 5%. Bates and Damgaard(71) have com-
pared the length and velocity forms of the multiplet strength, calculated
using HF functions, with experimental values for several transitions of
lithium and sodium. In all the cases they considered, the length form of
the multiplet strength, although it sometimes gave poor values, was in
better agreement with experiment than the velocity form. These calcula-
tions would seem to bear out the expectation that the use of the length form
of the matrix element, when HF wave functions are used, will give more
reliable results than the use of the velocity form.

The simple basis set SCF functions, given in Tables V-VIII, have
also been used to calculate S(M)IF. The agreement between the values
obtained using the accurate-set SCF functions and the simple set SCF func-
tions is quite good. For the length form of S(M)IF, the differences between
the values obtained using the simple and accurate set functions are never
larger than 0.35%; for the velocity form of S(M)IF, the differences are
never larger than 0.10%. The greatest differences between the simple set
and accurate set SCF orbitals are at the tails of the orbitals (c.f., Tables IX-
XII). It is not surprising, then, that the differences for the velocity form
of S(M)IF are sometimes less than those for the length form. For the ac-
celeration form of S(M)IF, the differences are somewhat larger than for
the length and velocity forms, but only for the Zp-hole - 3s-hole transitions
of Cl, Ar+, and K++ is the agreement rather poor.
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Varsavsky,(47) using a method based on screened nuclear charges,
gives values of S(M)IF for a large number of ultraviolet transitions.
Varsavsky's values and the values obtained from this calculation are com-
pared in Table XXI. The values of S(M)IF given for this calculation are
taken from Table XIX. Varsavsky's values are all approximately twice as
large as the values of this calculation. It seems likely that he made an
error of a factor of 2 in calculating S(M)IF from the value of the radial

integral f0 P()r P() dr. The values of S(M)IF are, as usual, in atomic
units. 0 p n

TABLE XXI. Comparison of S(M)IF with Calculations
by Varsavsky (Values of S(M)IF are in a.u.)

2s-hole -. 2p-hole

F Ne+ Na++

This calculation 2.065 1.463 1.086

Varsavsky* 5.011 2.991 1.977

3s-hole - 3p-hole

C1 Ar+ K++

This calculation 5.36 4.14 3.30

Varsavsky* 11.53 8.30 6.23

*See Ref. 45.

Experimental data for the absolute or relative intensities of the
X-ray lines computed here have not been found. However, a calculation of
r(R), the radiative width of the I s-hole state (or K state), can provide a
comparison with experiment.

For the argon-like ions, I s-hole - 2p-hole (K) and the ls-hole - 3p-
hole (KA) transitions make the most important contributions to r'R). All
other transitions from the la-hole state involve at least double excitations
(e.g., I s 2 sZ2p63sz3p6 - I sZs 2 Zp'3s3pSns, n 2t 4) and are much less probable.

The value of r(R) for argon has been calculated using the values of
S(M)IF given in Table XIX, the experimental values for the energies of the
Ka and KA emission lines(6 2) [AE(Kcz) = 108.70 Hartrees, AE(Ka2 ) =
108.62 Hartrees, and AE(KPI) - 117.26 Hartrees], and the relations of
Eqs. (38-40). The value is found to be r1) = 0.0835 eV. The K-shell
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fluorescence yield for argon, as determined by Watanabe, Schnopper, and
Cirillo,(81) is MK = 0.140 ± 0.014. From Eq. (42), a value of the total width
of the K-state I' = 0.60 _ 0.06 eV is obtained. The uncertainty in r K is
taken entirely from the uncertainty in the value of %IK. Table XXII compares
this value of IK and values obtained directly from experimental data on
X-ray emission and absorption by Watanabe(80) and by Deslattes.(52) The
value which we have obtained is, within experimental uncertainties, in agree-
ment with the experimental values.

TABLE XXII. A Comparison of

Several Values of rK for Argon

Author rK (eV)

Present Work 0.60 ± 0.06

Watanabe* 0.68 + 0.03

Deslattes** 0.70 ± 0.05

*See Ref. 78.

**See Ref. 50.
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Page 44, second group, first line, last column, 0. 1454 should read 0. 1545;

for Ne+ ( 2S) is-hole the <r> = 0. 1545.
is

73



Reprinted from Tu E JOURNAL OF CHEMICAL PHYsics, Vol. 41, No. 9, 2600-2611, 1 November 1964
Printed In U. S. A.

Analytic Self-Consistent Field Wavefunctions and Computed Properties for
Homonuclear Diatomic Molecules*

ARNOLD C. WAnILt
Argonne National Laboratory, Argonne, Illinois and Laboratory of Molecular Structure and Spectra, University of Chicago, Chicago, Illinois

(Received 28 April 1964)

The analytic and computational framework for Hartree-Fock-Roothaan calculations on homonucleardiatomic molecules is presented. Several approaches to calculating the wavefunction are sketched as well as
methods of computing molecular properties from the wavefunction. Emphasis is given to the efficient or-ganization of these calculations for existing digital computers. Typical results obtained through the ap-plication of the programs and techniques developed are presented for the fluorine molecule.

I. INTRODUCTION of self-consistent field wavefunctions and properties
ALTHOUGH many calculations have been per- for homonuclear diatomic molecules and the specific

formed on diatomic molecules, few have been application of these programs to the F, molecule.
of sufficient depth and scope to establish the usefulness 11. CHOICE OF UNIrS COORDINATE SYSTEMS, ANDof the mathematical model. It is the purpose of this ATOMIC 1ASIS FUNCTIONS
work to present the analytic and inescapable compula-
tional framework for Hartree-Fock-Roothaan calcula- Atomic units are used throughout this paper. In
tionsthis system the unit of length is the bohr (0.52917 ),
and two-center one- and two-electron integrals are the unit of energy the hartree (2R.hc=27.20974 eV),
available,' it is possible to construct a variety of types and the unit of charge that of the electron, e-. In these
of wavefunctions for diatomic molecules. Among these units the electronic Hamiltonian for a diatomic mole-
types of calculations are straight LCAO, valence-bond, cule is
atoms in molecules, limited configuration mixing, and H= + (I(- A-Z,/r,-Z/r #) + _I/r,,. (1)
self-consistent field molecular orbital calculations. The 00
methods discussed in this paper apply to the calcula The sums are over the electrons of the molecule. Thetions of analytic self-consistent field wavefunctions for two centers are designated by subscripts a and b andhomonuclear diatomic molecules via the Roothaan their mutual separation by R. The quantities r., andmethod. The analysis for the self-consistent field equa- rt are the distances from Nuclei a and b, respectively.tions is well documented, and the programs available The position of the electrons with reference to thefor atoms' -4 remain virtually intact when linked to the two 'centers is described in terms of the following
calculation of the diatomic matrix and supermatrix three' coordinate systems:elements. 'The methods employed to evaluate these (1) Cartesian coordinate systems centered on Nu-elements have been presented recently.' clei a and b and on the midpoint between a and b,It should be emphasized that even wit the present respectively. The z. and 4 axes are chosen t,) lie along
large-memory high-speed digital computers the calcula- the internuclear axis pointing towards one another.tions presented in this paper would be intractable (2) Spherical coordinates centered on Nuclei a and b.unless a great deal of attention is given to possible The atomic orbitals are usually defined in terms of
economies in the, analysis and organization of the these coordinates.
matrix and supermatrix computations. What follows (3) Prolate spheroidal coordinates with foci on Nu-will present such an organization for the calculation clei a and b. These coordinates are defined in terms of

the spherical coordinates byBased on work performed under the auspices of the U.S.Atomic Energy Commission, and by Advanced Research Projects t= (r.+rt)/R; '1= (r.-r)/R; 0=0.=06. (2)Agency through the U.S. Army Research Office (Durham) underContract No. DA-11-022-ORD-3119, and by a grant from the The normalized complex STO's (Slater-type orbitals)National Science Foundation, NSF GP-28.t NSF fellowship, 196-1962. are used throughout this paper. The STO's designatedI A. C. Wahl, P. E. Cade, and C. C. J. Roothaan, "A Study of by x.,x. or XbPuL indicate the triple n, 1, m and areTwo Center Integrals Useful in Calculations on Molecular Struc- given by
ture" J. Chem. Phys. 41, 2578 (1964) (preceding article).

C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
'C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960). , m) = (2t)m+[(2n)!]"r,erY,,(, r), (3)
IC. C. J. Roothaan and P. S. Bagus, "Atomic Self-ConsistentField Calculations by the Expansion Method" Methods of Corn- where the spherical coordinate system is centered onputational Physics, Vol. II (Academic Press Inc., New York). Nucleus a or b and the Yl.(0, 0) are the normalized
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ANALYTIC SELF-CONSISTENT FIELD WAVEFUNCTIONS

complex spherical harmonics defined by ient to group the basis functions X, according to the

YV,(e, T1) =6'a(coso) 4 ,(0), symmetry of the molecular orbital
and xp-xp, (11)a,.(0= (2,r)-1e; (4) so that

and the normalized associated Legendre functions are w,.a = 'xpaCAp, (12)
defined by P

o 1 [21+1 (1-m)!]' where X is the symmetry species and a is the subspecies
2'liL(cose) = 2 (i+m),!j of symmetry X.

The total electronic energy of the system is expressed
r d 1 '+m in terms of matrices and supermatrices, whose elements

X (-sin0)'[---oJ (cos0- 1) ,  (5) are one- and two-electron integrals over the basis func-
tions xpx,, and suitably defined density matrices built

where -l<m <m . from the coefficients Cix,1--. The variational principle
In Eq. (3), n is taken as being a positive integer and is applied to minimize the energy with respect to the

zeta (r) is completely flexible. linear parameters Ca,. By proper manipulation, the
The normalized associated Legendre functions are variational equations determining the coefficients Ca,

related to the unnormalized associated Legendre func- can be written in the form of pseudo-eigenvalue equa-
tions by tions. These equations are customarily solved by the

[(21+1) (1-m)! i iterative SCF procedure. A complete and authoritative
O6'l Wm. (X). discussion of the self-consistent-field equations and

process for atoms has been given recently by Roothaan
The P,.(x) functions are defined by and Bagus.' The reader is encouraged to refer to this

-- dm work for details since the formalism for atoms is vir-
Pi,(x) =-- (6) tually the same as that for molecules.

IV. APPLICATION TO THE HOMONUCLEAR
For the calculation of the exchange in~egrals we make DIATOMIC MOLECULE
use of similar functions defined for 15x< co by

- ~ dL (x;_1)1.For the homonuclear diatomic molecule two-center
PA"(x) = (x2~--l)21,(xS- 1) (7) symmetry basis functions belonging to the rotation-

Sx' ) "reflection group D, are introduced by

Details of these considerations are presented elsewhere.1  X;A= (1/V7) (Xazc+o').), (13)

III. REVIEW OF GENERAL THEORY
where the subscripts a and b refer to the two atoms.The total N-electron wavefunction is put forth as In order for xx to have proper symmetry, it is obviousan antisymmetrized product of MSO's1  that xapxa must be the mirror image of xba. when

,b= (NI)0,Iti..'¢N (8) reflected through a plane midway between atoms a
and b perpendicular to the internuclear axis. The pa-

where [1, 2, ...N3 indicates the operation of "alterna- rameter a) is determined by the gerade or ungerade
tion" and symmetry of the basis function Xa. and is given by

( ,,  (9) =(-)" for g symmetry and ( for u

where the superscript 14 stands for the space and spin symmetry.
coordinates of the lith electron, and the subscripts x For given symmetry X, the subspecies a permits two
and i label the different MSO's and MO's, respectively, values; namely, a=--mx where mi is the value of the
In the following we drop the superscript , and sub- projection of orbital angular momentum on the inter-
script v in order to simplify salient features of the nudear axis. Henceforth the notation ft in lieu of
MO p.# for the homonuclear diatomic molecule. In -jf is used. The introduction of symmetry basis func-
the expansion form of the self-consistent field method tions permits considerable computational economies.
the molecular orbital p, is expanded in terms of a set The variational principle is applied to minimize the
of suitable functions called basis functions x,, total energy of the molecule yielding the Roothaan

equations determining the linear coefficients Ca,. The
qo= __,xC,, (10) expression for the total energy of the molecule is

given byl-4
where the Ci, are the expansion coefficients which are
determined by the variational procedure. It is conven- E=HtDr+1Dr6'Dr-ADotDo. (14)
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In the above expression the elements of the H chosen to be physically significant. Finally the saving
matrix, which is a collection of all one-electron inte- and interlacing of reusable information during the
grals between basis functions and is considered as a course of a lengthy calculation leads to a significant
supervector, and the T and Q supermatrices, which are extension of computer capacity (particularly during
ordered collections of all two-electron integrals between the variation of orbital exponents).
basis functions, are only dependent upon the set of basis
functions Xx. employed. The total density matrix DT V. CALCULATION OF THE MATRIX ELEMENTS
and the open-shell density matrix Do, however, are write down the explicit expressions used for the
constructed from the expansion coefficients CA,, which We
are determined by the self-consistent-field process.2 "4 evaluation of matrix elements, Hn and SxA, for the

The bulk of the diatomic SCF calculation is the homonuclear diatomic molecule, although the methods
evaluation of the matrix elements H\, and the super- employed may be easily used to evaluate matrix ele-
matrix elements , and , where X and A ments for other operators. The formulas are
designate the symmetry of the basis functions, and (9
p, q, r, s label the functions within a given symmetry. Sad1J - ,o. dV, (19)
For the homonuclear diatomic molecule we have a

Hxp 4 *x--0-Zr -+r) xqdv (5)Ux,,= dj 1EfX ,,a r -1) xxdV, (20)
d7fX~paPJ 9

a*,.,.°= (2 ) (rij)Tx,,= - d-j1 fx*P x.AdV, (21)
(irpo a

XXqx.(1)X,o(2)dVdV2, (16) Hip= Ti-ZtM . (22)

Sx ( rIf we now introduce the explicit form of the symme-Jp,.,aa= ( 4d,)-' jx*V(1)X*( 2) (rS)-O try basis function given by Eq. (13) and carry out the

summation over a, we obtain
Xxa,(1)xq.\(2)dVdV 2, (17)

and s,.=fX*ap.aXu dV+fX".PA.adV, (23)

where d, and d, are the dimensions of the representa-*
tion X, and the basis functions are given in terms of
atomic functions by Eq. (13). +¢xfx*.p.ri-x.dV+fX* .xo7 dlV, (24)

From Eq. (13) it is clear that Hxm reduces to a sum
of one- and two-center one-electron integrals, which
can be evaluated in a straightforward manner. How- TAP= _fx*.A. .av-10iu fx *..AxjfdV.
ever, the evaluation of the supermatrix elements, 3 J, ,o aa

and presents a formidable computational prob- (25)
lem for any large molecular calculation. One of the econ-
omies which makes these calculations feasible in prac- The one-center integrals occurring in Eqs. (23-25)
tice is that no single two-electron integral is ever com- are easily computed via the functions'
puted as such. Instead the scalar product of a total
symmetrized charge distribution with a one-center potential V1(x) =x-'il=f'drre" . (26)
yields all Coulomb.' and hybrid, integrals contributing 0
to a given supermatrix element. Similarly, all exchange? The two-center Coulomb integral
contributions are evaluated as the scalar product of
a pair of two-center xckusmge fxctiu.os symmetrized
for the homonuclear diatomic molecule. Another im- X
portant principle which leads to considerable economy
is to confine all numerical work to a manifold of points can be computed by applying the Laplace expansion'
characteristic of the particular molecule being studied and to r671.

'C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951). The remaining two-center integrals are of the type
'K. Ruedenberg, C. C. J. Roothaan, and W. Jaunzemis, J. f

Chem. Phys. 24, 201 (1956). X*,aMXM1~dV,K. Ruedenberg, 3. Chem. Phys. 19, 1449 (1951).
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where M is a one-electron operator. They are computed The methods which will be used for the evaluation of
via the auxiliary functions L.001(r, p).'-s these supermatrix elements divide them naturally into

The amalgamation of the various one-electron pro- two classes. The first class, Eqs. (30), consisting of
grams into the diatomic matrix program was done in a the Coulomb and hybrid integrals, will be evaluated
straightforward manner. Note that all integrals reduce as scalar products between two vectors-one having as
to analytical expressions. The main programming con- its components the values of a reduced charge distribu-
sideration was to avoid any redundant computation. tion, the other having as its components the weighted
In any event, the evaluation of the one-electron ma- values of the electrostatic potential arising from a one-
trix elements constitutes only a small fraction of the center charge distribution. Both of these vectors occur
total computation time. over a two-dimensional manifold of points used for

numerical integration. The second class, Eqs. (31),
VI. REDUCTION OF THE SUPERMATRIX ELEMENTS

TO INTEGRALS OVER CHARGE DISTRIBUTIONS consisting of the exchange integrals, will also be evalu-
ated as scalar products between two vectors; however,

After introducing into Eqs. (16) and (17) the ex- for this class the components of each vector are the
plicit form for xx. given by Eq. (13), it is clear that values of a weighted exchange function over a one-
the general supermatrix element may be considered to dimensional manifold of points. This exchange func-
be the sum of electrostatic interactions of charge dis- tion is obtained through the analysis' recently pre-
tributions built from products of atomic basis func- sented, organized specifically for distributions of the
tions, A given charge distribution occurs in many' form .
supermatrix elements, and we use these distributions
to achieve great computational economy in the evalua- VII. COULOMB AND HYBRID INTEGRALS
tion of the supermatrices. The charge distributions For the evaluation of the supermatrix contributions
which are particularly useful for the homonuclear mole- jc ,7 o and 3C. ,.o the analysis given recently' was
cule are organized for the computation of large batches of inte-

f ,, * , grals and for the symmetry D_4. Since the integration
over the angle 0 is done analytically, the functions

, (27) necessary for the numerical evaluation of the Coulomb
It is easily established that and hybrid integrals need to be tabulated only over a

two-dimensional manifold of points. The selection of
S(- _ (28) this manifold is strongly influenced by the particular

which holds for charge distributions with the super- two-dimensional integration scheme used. In principle
scripts a or ab. this integration can be performed over any two-dimen-

If we recast the expressions for the supermatrices sional coordinate system; in practice, however, the
g and XC as given by Eqs. (16) and (17) in terms of accuracy and reliability obtained strongly depends on
these charge distributions (27) we obtain the specific choice of the manifold. After various at-

+ tempts, it was found that a grid constructed as the
° "rap direct product of two Gaussian grids over the prolate

SCM1qr.o = XCXrJ.,+ X ,-re, (29) spheroidal coordinates E and was most satisfactory.
where Since all numerical work for the evaluation of the

Coulomb and hybrid integrals is confined to the chosen
manifold, which is referred to as P, it is useful to define

S+,O(2)-k*%,,,( 2 )'] the reduced atomic basisfunctions Xa.(P) by means of

- , 1 ] W"*'p ,qxa(2) + "aq.(2) x° =(P, 0) = g.,.(P)e"/(2r). (32)

-12*bA.,#.(2)J, (30) From these reduced atomic basis functions we can

(1) (2) build the reduced one-center charge distributions
' W, a .(P) = lr.w ,.(P) X.W (P), (33)

and a reduced symmetrized two-center charge distribution

+~p~w= [ a , ..,() +,, ., 2 (31 ) +,ff.h(P') r,,,g(P).

At this point it is convenient to limit considerations to
- , I f .. e(2)]. the use of a = m and 0 = q-m, and to the only combina-

_tion of the reduced distributions of Eqs. (33) which
C. C. J. Roothaan, J. Chem. Phys. 24, 947 (1956). will appear in the working formulas for the super-
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matrices of the homonuclear diatomic molecule. We The working expressions for the Coulomb and hybrid
accordingly define reduced homonudear distributions by integral contributions then become

+ rx~r ~ Fb ,x. ,,.,(), (34) ='+ (-1) UVwJ.

Q'-,(PF) = QJup. ,a, .(P)-+ Qi ,,.( P) +Ff'V~q+x.- ( - 1)-1VX. Q- o. (40)

VMI. EXCHANGE INTEGRALS

It is easily shown from the properties of the spherical The exchange supermatrix contributions, ,° and
harmonics' ," that , were evaluated by a straightforward applica-

- P =(-I)u +,£ (P). (35) tion of the methods presented recently.' Again the
incorporation of the D.4 symmetry of the charge dis-

The second quantity necessary for the evaluation of tributions , into the analysis leads to significant
the Coulomb and hybrid integrals as scalar products computational economies. Both , and 3ex ,mo
over the manifold P is the weighted potential arising can be considered as special cases of the general integral
from a one-center distribution. These weighted poten-
tials may be developed from the familiar' one-center Xiaarp:.,,,gg=lzaa,,n(1) I l*m.,va( 2 )], (41)
potentials obtained by the integration over the coordi- where ; and it indicate symmetry species, and Y' and 8
nares of one electron subspecies. It is computationally convenient to formu-

f ..u,2 late this integral as the scalar product of two vectors
U~,U+i.r(2) = ,,~P w.(1)(rn)-1 dV, over a one-dimensional manifold of points, where the

manifold is defined by the numerical aspects of the
f exchange integral analysis. Each of these vectors arises

U-,,.(2 ) =j fl ,, (1) (r1 )-dVi, (36) from an exchange function determined by a charge dis-
tribution.

where the above integration is performed analytically It is easily shown1 7 that the basis function product
in a spherical coordinate system centered on Nucleus a. xix*, may be expanded in prolate spheroidal co-
The definition of the potential Eqs. (36) has been ordinates by
limited to Center a since reference to only one center

is necessary for the final evaluation of the integrals (-)(R)( --9)x.x&,w--
due to the Dh, symmetry of the distributions Eqs. )
(34). The specific reference to Electrons 1 and 2 in (1)K.co(/, i)exp(-p-r)

Eqs. (36) is only necessary to formally define these X-(p-1)(1-)JiM4,(),(), (42)
potentials. Once defined, they may be considered as where
-functions of three dimensions and the reference to the ( , ) = F""a- ,
coordinates of Electron 2 dropped. Since we will need
only the dependence of this function over the manifold and
P we define the reduced potentials by M a-a.

Uk,1 (P, O)=Ua,,',(P) exp[-i(m,,Fnz,)0J. (37) The normalization factor Kb, the parameters p and r,

From this reduced potential we construct the reduced and the expansion coefficients a,, are determined by
weighted potentials over the manifold P defined by the product X.,xoXk,-. Since the distribution Q*s.,s

is a linear combination of two basis function products
V+",(P) = W(P) UAA-(P ), (38) which differ only by the inversion of the centers a

frand b, itmay be expanded by
where W(P) is the weight factor necessary for the
numerical integration over the manifold P. It arises ((R)'( '-q')fl-,,, (-l)DKq. )l) 1-
from the Gaussian weight factors and the volume ele-
ment in the prolate spherkal coordinate system. X$.(O)&_()e-,io0(, y)c',ai(, -,)evj.

For the q supermatrix only the limited class of dis- (43)
tributions L'+, and potentials V+,% are needed. We
therefore introduce the abbreviated notation defined by The introduction of these expanded distributions into

GQ)IM(p) = 04"(P) the expression (41) is followed by familiar steps.1.?
First the Neuman expansion for 1/ri, is introduced

VX(P) = V+ (P). (39) and the trivial integration over the angles 01 and oh

* M. E. Rose, ,emestary Tkeory of Agular Momenum (John performed. Then, the results of the analytic integra-
Wiley & Sons, Inc., New York, 1957), Chap. III. tions over i and vs are expressed in terms of the
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auxiliary functions", defined by For the exchange contribution to the supermatrix
1 only the limited class of exchange functions, namely,

B 71(l =a,(17 (n), (44) G+s;iq) will be needed. As was done for the Coulomb-j - ( =hybrid contribution we introduce the abbreviated no-

for which it is easily verified that tation Gi;x"(S) Gj;paq(S). (48)
Bjml(-) = (-) 1+M+$Bj1(rr). The final working expression for the exchange integral

Finally, several partial integrations over the variables contribution, to the supermatrices in terms of scalar
&i and 6 lead to the following expression: products are

XF&= MO (sil 1) 0+8 2 It jA2,r00;-m,,R (45) c 2JJ~j1,q.Dw.= ~
L-L min -

where
Ito

1.;+J ,

= 4R-'[u' , ( -1) Iz+M][u.,( -1 I +M]

+ 2 G-;px'G-j;#.p, (49)
ir-V ,,,1)

where in the summations over 1, the smaller lower
XF' °,p(e; p, )FU-, .*(; p, ?) limit is used if u ,(-1)'+'= 1 and the larger lower

and limit if ror,( - 1) -+-,= - 1. Also note that the summa-
tion over I proceeds in steps of two. This economy

Fp; ., (0; o, 1-) = dx Pim(x) (x- 1) i results from the inversion symmetry of the distribu-
fl tions Eq. (43).

XFB/"(pr)Ea,.,-eer. (46) ix. CALCULATION OF THE WAVFUNCTION
I

Note that the I v,,0,wy.x integral vanishes identi- Fully automatic computer programs were built which
cally unless and a-#--8. The param- incorporated the analysis and organization discussed in

eters p and r, the indices x and j, and the coefficients Secs. I-VIII of this palpe? These programs, which com-
aq entering into this auxiliary function are determined puted the H matrix and the supermatrices, a, and Q,
by the charge distribution O,.,,, through Eqs. (42) were linked to a modified version of the atomic SCF
and (43). program written at the University of Chicago and

The numerical scheme presented recently' was used Argonne National Laboratory.' The modifications which
to evaluate the integrals , namely, Simp- had to be made in the atomic SCF programs were, of
son's rule integrations over the variables e and x. This course, complete replacement of the atomic integral
numerical procedure was used to avoid many complica- computation, new cosed- and open-shell weight fac-.
tions7 which arise in the analytic evaluation of the tors, and extensive changing of the "screening" of V.
integrals over the numerous orbital products appearing input data and printing of results to fit the diatomic W
as integrands. The Simpson's rule integration intro- molecule. The specifications for the preparation of >

duces in a natural way the manifold S as the selection input and use of the molecular program are - be. 0

of points used for the numerical integrations (see Ap- Once such a program exists it is possible to use it in
pendix). For the purpose of organizing the numerical a variety of ways ranging from the calculation of very
work in the simplest possible terms it is useful to define crude SCF wavefunctionsuil to an attempt to reach
the weighted exchange function over this manifold S by the molecular Hartree-Fock function for the ground

and excited states of diatomic molecules.u -Y There
G+;u(S) are, of course, an infinite number of crude functions

(-1)-2R[W(S)lE(Sl 1) )Pj1,(S)1- 1 1Laboratory of Molecular Structure and Spectra, Universty
of Chicago (Arnold C. Wahl).

p, ur), lB. J. Ransil, Rev. Mod. Phys. 32, 245 (1960).
j. Eve, Proc. Roy. Soc. (London) 246, S82 (1958).

G-;, ( 3) I P. E. Cede, K. D. Sales, and A. C. Wahl, "The Electronic
Structure of the Nitrogen Molecule", J. Chem. Phys. (to be

i (_ 1)=2R-[W ( S) ]i[ ( S- l )IP +--i published).
14W. Huo, "The Electronic Structure of CO and BF," Ph.D.

X F'+a;,m,,,,(3; p, 7), (47) thesis, University of Chiag.'A. C. Wahl, "SCF Maefuniction and Properties for CI,"
where W(S) is the necessary weight factor for the (to be publisaed). ,,u A. C. Wahl and T. L. Gilbert, "A Theoretical Study of theSimpson's rule integration over the manifold. CW- Molecule-Ion," Phys. Rev. (to be published).
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which may be calculated depending upon the use for metry, the matrix elements defined by
which they are desired and in many cases personal
taste. There is within the framework of the analysis, M,=x*x.Mx,.dV (50)
however, only one molecular Hartree-Fock function. .

It has been the goal of this work to make it possible to are necessary. We may conveniently evaluate the ma-
approach very closely the molecular Hartree-Fock func- trix element M), as the scalar product of two vectors
tion with a truncated expansion. Since this function over the manifold P. For this purpose we introduce
may be represented by several choices of basis sets, still another reduced komonuclear distribution defined by
and currently the path to the "final" function depends
on computer economics, program capacity, intuition, Q,%,,(P) = Oax,.qxa(P)+Igl,,x.a,(P)+Qb q.a(P)
and previous data, a brief discussion of the approaches
used in this'work is in order. (51)

The gradual improvement of the molecular wave- and the weighted property operator defined by
function depends upon the judicious addition of basis M (P) = W(P)M(P),
functions xA.x and the optimization of the orbital ex-
ponents of the added functions in order to make them where M(P) is the value of the property operator over
most effective. This improvement process may be done the manifold P and as before W(P) is the weight
in many different ways. Two distinct methods were factor necessary for the numerical integration over the
employed in this work. manifold. We may integrate analytically over the

The first method was to start with a minimal basis angle 0. The general expression for the property ma-
set, optimize the basis function exponents in a coupled trix elements are then
way, using chemical intuition and computer experimen- M)" = M.-ah. (52)
tation to determine which functions should influence
each other, gradually add new basis functions, and The molecular property is given as the inner product
optimize the new exponents. This process was con- of the density matrix with the property matrix (52)
tinued until the total molecular energy showed little where both are considered as supervectors by
further improvement upon the addition of new func-
tions or until program capacity was exhausted. The M=DT.M. (53)
second method was to start the molecular calculation A quantity often of interest, the contribution of a
with a large basis set which was obtained independently given orbital to this property, may be defined in terms
for the constituent atoms, singly optimize each basis of the contribution of the ith orbital to the density
function exponent, and add functions with higher matrix:
quantum numbers to each molecular symmetry with Mi=D,.M, (54)
optimization of the new exponents. Ideally these two
methods would lead to the same result; however, since where D contains only coefficients from Orbital i.
computer economics makes extensive coupled optimi- This numerical scheme is conceptually simple, and a
zation of the molecular basis function exponents in- very large class of properties can be evaluated in this
tractable, the exhaustivdy optimized atomic basis sets'7  way, particularly since most differential operators can
appear to be an energetically better representation of be expressed as multiplicative ones.' An important
the molecular wavefunction after the exponents are feature of this method is its generality and easy ex-
merely singly optimized and functions with higher 1 tendability. The basic quantities needed are only the
values added to each molecular symmetry. These con- charge distributions il, and the weighted property
siderations will be elaborated in forthcoming work." -1 s  operator M over the manifold of points P. Properties
It is sufficient to say here that the atomic Hartree-Fock characterized by operators which have strong singular
function is a dominant contributor to the molecular behavior at one of the nuclei can be evaluated by this
Hartree-Fock function and forms a very good starting method if a suitable manifold P is designed; however,
point for the further development of the molecular better methods exist for the calculation of this type
wavefunction. Currently attempts are being made to of operator.
develop some wavefunction "prescription" which by For the evaluation of spectroscopic constants, use
starting with atomic basis sets will efficiently lead to must be made of the computed SCF potential curve
the molecular Hartree-Fock function with a minimum for the molecule. This computed potential curve has
of effort. two serious shortcomings. The first is that the molecu-

lar orbital wavefunction dissociates properly only for
I CALCULATION OF MOLECULAR PROPERTIES a limited class of systems. For all others it dissociates
In order to evaluate any molecular property charac- into a sum of neutral and ionic atomic states. Although

terized by an operator M which has cylindrical sym- this error is largest at R= ao it probably also tends to

I 7P. Bagus and T. L. Gilbert, "Accurate SCF Waveunctions raise the molecular energy even at the equilibrium
for First Row Atoms and Ions," Phys. Rev. (to be published). internuclear distance. Even if the proper dissociation
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took place, there is the second error which tends to selection of the manifolds P and S. This selection is
raise the molecular energy. This is the increased cor- discussed in l Appendixf'lt should be noted that the
relation energy in the molecule. Both of these factors three basic working functions V-,, Q'+,, and
lower the computed dissociation energy which in this G': ;,x, depend only upon a single pair of basis func-
work is defined as tions. This retains the computational identity of Elec-

trons I and 2, and thus the most arduous part of the
D. Emoeouie,- 2 Eatom, (55) supermatrix evaluation, namely, the evaluation of these

where Et.m is the Hartree-Fock atomic energy. Often three types of functions, need be done for approxi-
the sum of these two errors is sufficient to completely mately F,,Exn\n, basis function pairs as opposed to
overshadow the comparatively small binding energy of the square of this dependence which would arise if
many diatomic systems. However, the failure of the this identity were sacrificed. (n. is the number of basis
molecular wavefunction to show binding on this basis functions in symmetry X.) Also the conceptual sim-
(55) does not completely obviate the significance of plicity of this formulation makes it easily extendable
the SCF potential energy curve. We may certainly say to polyatomic systems. The main further developments
that necessary are the selection of the manifolds, character-

Eexact E1iartreeFock+AE, (56) istic of the molecule under study, over which numerical
work will be done and a general reorganization for the

where zE is the correction energy. It is not unreason- multicenter geometry.
able to expect that over any small range of R, for (2) In order to avoid extensive redundant computa-
instance, near the computed potential minimum (R.- tion in the evaluation of the supermatrices it is neces-
AR<R<R +AR where AR-0.25 a.u.) that AE is sary to have all vectors Vlx, available when a vector
roughly constant so that Q'+,A, is constructed. The size of existing computer

dE.eat/dR-dEHartr.Fock/dR. (57) memories make this impossible for a moderately large
basis set. Therefore the manifold P was divided into

This should allow the equilibrium ifiternuclear distance regions determined by values of the prolate spheroidal
and the first-order spectroscopic constants to be pre- coordinate t. The vector tabulations were then made
dicted fairly well. In this work a Dunham analysis only over a region in the manifold and the total super-
was used over the region near the equilibrium inter- matrix contribution evaluated as the sum of the re-
nuclear distance, and the first-order spectroscopic con- gional integrations.
stants thus obtained show fair agreement with experi- (3) The convergence of the Coulomb and hybrid
ment. integrals as a function of the number of points in the

Total electronic charge densities for the molecule are manifold P was a matter of experimentation and de-
defined by pended upon the molecule under investigation. It was

F,= " 'D1 . (58) found that the t integration should be truncated at
X P 9 t<50/ minR, where P'mi is the minimum exponent in

In order to visualize these densities they are normally the basis set, and that a grid of 20 points on each of
plotted as contour lines in the x, z plane. These lines the variables t and 17 was sufficient for studies of first-
are defined by row diatomic systems. For investigations of second-row

12(x, z) = C, (59) molecules, however, grids of 36 points were found to

where C is the value of the density for which a contour be necessary.
is desired. Although the total charge density is signifi- The convergence of the exchange integrals as a func-

cant, orbital densities, obtained by including only the tion of 1 in the Neumann expansion is controlled by a

contributions of a given orbital to the density matrix, single threshold. When all contributions arising from a

should be of even greater interest. These orbital densi- given vector G:-:z;, are below this threshold in abso-

ties should prove useful in studying the visual aspect lute value, the calculation of this vector is terminated.

of molecular and atomic orbital comparisons, concepts The iteratio.i on I is terminated when the contributions

like S-P hybridization, and the difference between for all vectors G lie below this threshold or when

bonding and antibonding orbitals. These contours are 1=30. Should the latter occur, a record is made of the

currently produced and plotted automatically by the largest last contribution and the calculations continued.

computer. In practice, the exchange contributions have converged
well before 1=30. It was found that 40 points in the

XI. DETAILS OF THE COMPUTATION manifold S were sufficient for all exchange integrals

The following is a list of some general computational occurring in studies of first- and second-row molecules.

considerations which make these calculations possible (4) Due to the numerical characteristics of the ex-

with existing computing facilities, change integral analysis it was necessary to scale the
functions P1a"(x), e- , and Bjtm(x).

(1) The reliability and accuracy of the methods used (5) During the variation of orbital exponents a great
to evaluate the supermatrices depend upon the proper deal of machine time may be saved by the saving and
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TABIX I. Near Hartree-Fock wavefunction for the ground state of F2 .

Internuclear distance- 2.68 (bohrs)

Molecular Basis functions (quantum numbers, orbital exponents)
symmetry

species a C, 1r. Ire

IS 8.27336 IS 8.28062 2P 1.67164 2P 1.58741
IS13.17191 1S13.16925 2P 3.20350 2P 3.18020
3S 4.90649 3S 5.03602 2P 6.11692 2P 6.15863
2S 2.26251 2S 2.23962 3D 2.49433 3D 2.43222
2P 1.84915 2P 1.44746 4F 2.85001 4F 2.56431
2P 3.26935 2P 3.00518
2P 5.85912 2P 6.35647
3D 2.44269 3D 3.60759
4F 2.83176 4F 1.52251

Total energy Potential energy Kinetic energy
(hartrees) (hartrees) (hartrees) Virial theorem

- 198.76825 -397.35489 198.58664 -2.0009145

Molecular
orbital lo' 2o, 3o, 1, 2r, 1s, Ii,

Orbital energy
(hartrees) -26.42269 -1.75654 -0.74604 -26.42244 -1.49499 -0.80523 -0.66290

+0.92243 -0.23113 +0.04801 +0.92318 -0.24801 +0.50684 +0.57948
+0.08175 -0.00452 +0.00260 +0.08074 -0.00368 +0.45168 +0.51156
+0.00560 +0.29092 -0.05578 +0.00618 +0.29569 +0.07153 +0.07716
-0.00037 +0.67105 -0.25752 -0.00098 +0.82366 +0.02122 -0.00102

Vector +0.00032 +0.06396 +0.58162 -0.00036 -0.02437 +0.00992 +0.00352
components -0.00066 +0.05373 +0.30716 -0.00033 -0.08330

+0.00145 +0.00749 +0.08509 +0.00120 -0.00927
-0.00025 +0.02017 +0.04571 -0.00043 -0.00633
-0.00000 +0.00931 +0.01416 +0.00005 +0.00264

reuse of the vectors V-,&, and G'.,, which are not cedure allows the calculations to be interrupted and
built from a basis function being varied. Therefore the recommenced when scheduling permits with virtually
program was designed to save and reuse those vectors no backtracking necessary. The emergency procedure
during the variation of exponents. periodically saves sufficient information to restart the

(6) Due to the large amount of computer time computation. Thus, should some catastrophe occur cal-
needed for any sizable molecular computation, a true culations may be continued with the loss of 'only a
interrupt procedure and an emergency feature were small fraction of the computing done previous to the
built into the molecular program. The interrupt pro- disaster.

TABLz IL Computed properties for near Hartree-Fock ground state wavefunctiono of F2.

Molecular R EQ q Ip De (r.+r&)A.. (p)OW.
property (bohrs) (hartrees) Is e(bor)' 0/(bohrs)s (hartrees) (hartrees) (bohrs) (bohra)t

Computed 2.68 -198.7683 0 0.659 6.868 0.6689 -0.060 3.689 0.7772
Experimt 2.68 -199.670 0 ... ... 0.5990 0.062 ......

Spectroscopic constants via Dunham analysis

%(cm - ) .X.(cm - ) B.(cm-') a.(cm-) R.(1)

Computed 1257 9.85 1.003 0.0108 1.33
Experiment 919.0 13.6 0.8901 0.0146 1.42

£ The basis set was constructed by starting with the nominal atomic set of Ragus and Gilbert: (1) singly optimliing all setas; (2) addition of U functions with
single optimlastio; (3) idltim of 4 fuactions with A& eptllatiun.
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ANALYTIC SELF-CONSISTENT FIELD WAVEFUNCTIONS

TAzLz HI. Comparison of arduously& built up molecular basis set with set
obtained starting from atomic b functions for Fs.

R E Q lp Do (r.+n&)A. (")Al.
Basis set (bohrs) (hartrees) A e(bohrs)s (hartrees) (hartrees) (bohrs) (bohrs)'

of ra Wir

Atomic start

Is Is 2p 2p
Is' is' 2p' 2p'
2s 2s 2p" 2p" 2.68 -198.7683 0 0.6589 0.66290 -0.048 3.689 0.7772
3s 3s 3d 3d
2P 2p 41 4f
2P1 2po
2p" 2p"
3d 3d
41 4f

Arduously built

Is Is 2p 2p 2.68 -198.7563 0 0.5753 0.66894 -0.060 3.695 0.7874
Is' Is' 2p' 2p'
2s 2s 2p" 2p'
2 2s 3d 3d
2P 2p, 4f 4f
2p.0 2p'

3P 4f
4f

'Arduous refers to starting with a small basis set and gradually adding functions with coupled optimization of zetas at each addition.
b Starting point was the "nominal" atomic set, the result of a very careful investigation of irst-row atoms of Bagus and Gilbert (Argonne National Laboratory)

to be published.

=U. RsSULTS FOR THE LUORINE MOLECULE Previous calculations on F, consist of SCF calcula.

The fluorine molecule was selected as a prototype tions by Ransil n and Even yielding total energies of
system for investigation through the use of the tech- -197.87694 a.u. and -197.87017 a.u., respectively.
niques developed in the preceding sections. The reasons Eve" also performed a limited configuration mixing
for this choice were several: (1) the comparative lack calculation yielding a total energy of -197.95036 a.u.
of experimental and theoretical information on this The best wavefunction presented in this work yields
system, (2) the fact that if fluorine could be success- an energy of - 198.76825 a.u.
fully studied with these programs it should clear the The above Ft function is presented in Table I along
way for studies of smaller systems and provide a guide- with the orbital energies. Table II presented additional
post for the investigation of larger systems, and (3) it properties computed from this function. The ionization
was estimated to be the largest system for which ex- potential (IP) was evaluated by Koopman's theorem.
tensive optimization of basis function exponents would The spectroscopic constants are given in conventional
be economically feasible and for which the molecular units. There are no experimental comparisons available
Hartree-Fock function might be attainable, for the molecular quadrupole moment (Q), the field

gradient at the nucleus (q), or, of course, the average
3.0 I , I " molecular size (r.+rA,, and the size of the average

2.0- cylinder enclosing the molecule (p)A,.
Table III compares the function (atomic start) ob-

,.t tained by starting with the atomic Hartree-Fock re-
sults with the molecular wavefunction which was built

X 0(up gradually (arduous). The atomic-start function is
energetically superior and represents far less computa-

- .0b 

tion.
Table IV presents a hierarchy of functions ending

-. o with the final function. Note the convergence of the
.0o ,energy as contrasted to the wide variation of several of

-*-. -1. -,.0 o ,. 5.0 30 4.0 s the properties as basis set size is increased.

Fio. 1. Total molvcular change density contours for the fluorine Figure I is a contour diagram of the total electronic
molecule, charge density in the x, s plane, where the wavefunction
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normalization is f##*dV = 2rN (N is the number of to S. Derenzo for his very able and enthusiastic assist-
electrons). ance in the computer programming of this problem.

The computed dissociation energy (D,) is poor; in Finally the very competent and patient assistance of
fact, of the wrong sign. Evidently the two shortcom- Miss M. J. Ewens in the preparation of this manuscript
ings of the molecular wavefunction discussed in Sec. is gratefully acknowledged.
X, namely, the increased correlation energy in the APPENDIX At, THE MANIFOLDS P AND S
molecule and the improper description of molecular
dissociation, are serious enough to completely mask --.The existence of a series of manifolds P which will
the relatively small binding energy for this molecule. yield increasingly accurate results by numerical inte-
This failure to yield energetic binding, however, should gration is basic to the very definition of the Riemann
not be considered a total condemnation of the wave- integral. In practice the problem is to find an optimal
function. It should be noted that the calculated ioniza- small set of points which will yield results of a desired
tion potential, internuclear distance, and the first-order accuracy. The development of this set is a matter of
spectroscopic constants show fair agreement with ex- experimentation guided by a knowledge of the spatial
periment. Further it should be kept in mind that the behavior of the charge distributions which appear as
binding energy is a very subtle quantity and that the integrands. These distributions show their steepest vari-
definition of it employed in this work is a particularly ation in the region near the nuclei, thus requiring a
hard test of the theory. Less rigorous definitions would manifold which concentrates points about the two nu-
yield almost any binding energy desired. clei and distributes points more diffusely as the distance

In conclusion it can be said that the results obtained in every direction from the internuclear axis increases.
for Ft are encouraging but that only through a con- After experimentation with several coordinate sys-
sistent study of the Hartree-Fock-Roothaan wavefunc- tems it was found that the manifold P obtained by
tion for a large series of molecules will the ultimate a crossed Gaussian numerical integration over the pro-
usefulness of this function become established. Such a late spheroidal coordinates Z and q yielded the most
study is now possible with existing "computing ma- satisfactory results where the inverse transformation
chinery" and is, in fact, under way. The molecular = (l+B)/(1-at) was employed. The parameter #
Hartree-Fock function is clearly lower in energy than was chosen to confine the manifold P inside an ellipsoid
any limited configuration mixing wavefunction cur- of revolution outside of which the wavefunction of the
rently available which suggests that a next logical step molecule under study is no longer computationally sig-
is to add the one additional configuration which would nificant.
lead to the proper description of the dissociation of the The manifold S, used for the numerical integration
molecule. Significant improvement of the potential necessary for the evaluation of the exchange integrals,
curve would then be expected resulting in the more must concentrate points near the internuclear axis
reliable computation of the spectroscopic constants. (=1). The inverse transformation J= 1/T where a
Hopefully, studies of this sort for a series of molecules Simpson-rule integration is performed over the vari-
will aid in the development of a set of consistent rules able T was found to be satisfactory. It is important
which will allow us to use the Hartree-Fock func- to use an equal interval numerical integration pro-
tion more effectively without enormous computational cedure so that the inner integrations over the variables
effort. It is also clear that the atomic Hartree-Fock x may be performed efficiently.1 If the selection of the
functions are necessary to efficiently evaluate the mo- manifold S does not extend to infinity, a correction
lecular Hartree-Fock function, as dialomic Hartree- term is added to the formula Eqs. (46) given for the
Fock functions may prove to be the dominant contribu- I%,.fl;mf. integral. This truncation correction term
tors to polyatomic and ultimately solid wavefunctions. is defined by

ACKNOWLEDGMNTS 3%o., ;",v., = 41-l[gj+au( 1).M+L]

The author is indebted to Professor C. C. J. Roothaan
for his continued interest and guidance in this work, X[QiMs( )/( )]FM t;i. .np(&a; r, p)
to Dr. T. L. Gilbert for many encouraging and helpful XFmiz rai(tw ; r- p), (60)
discussions and for making available the computer at
Argonne National Laboratory, to Dr. P. S. Bagus for where k=. is the finite upper limit of the t integration
his generous cooperation in making available to the and Ql"(x) is the associated Legendre function of the
author his version of the atomic sell-consistent field second kind.' The analysis of Sec. VIII was presented
program, to Dr. G. Goodman, and to the Chemistry for the infinite upper limit of the t integration since
Division at Argonne National Laboratory for sponsor- the above correction is a consideration which compli-
ing the last year of this research and in particular the cates formulas unnecessarily while representing no real
computations on Ft. The author is particularly grateful computational difficulty.
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APPENDIX B;

THE COMPUTER PROGRAM

1. General Considerations

A fully automatic program that computes the SCF wave function for
homonuclear diatomic molecules was constructed for the IBM 7094 compu-
ter. It incorporates the features discussed previously in this paper. An
SCF run using the first basis set presented in Table IV requires about
40 sec; the "final" basis set requires about 45 minutes.

The orbital exponents are varied automatically by an essentially
brute-force technique, which is the same as that presented for atoms.(4)

The program handles a limited number of open shell cases, among which I
are ffic , 7i , Z Z U 73 6 ,u  The necessary a and f3g ougu 6gmu TgoU 9gu 7'u, I

coefficients are presented in Table- Tfe homonuclear diatomic SCF

program is designed to include certain open-shell configuration cases.
Table V lists the vector coupling coefficients for the open-shell configura-
tion cases now acceptable by the program. The number of basis functions
permissible is determined by

ZG)(N)(N, + 1):5 144,2

where N. is the total number of symmetry basis functions, Eq. (13), of
symmetry X. The restrictions on basis function quantum numbers are
1 -< N -< 6, 0 :- 2: - 3, and -2 -< m -5 2. Experience has shown that this
program is useful for obtaining near Hartree-Foch wave functions for
molecular systems ranging in size from H2 through C12 .

Table V

VECTOR COUPLING COEFFICIENTS FOR
HOMONUCLEAR OPEN-SHELL CONFIGURATIONS

Open-shell Case(s) State(s)

Cgu Z,u I -4/z

'g-u , 6 g,u 
21g,u' ZAg,u I

9~u 9g,u ,/ 9

A g 1, 9F / 2 - / 2

17+, ls+ 1 -3/2
g' g

TO u f3g2 ' 2A 1/9 -1/18
u 9gu 9,U, 9,U
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2. Loading Conventions

The input to the program is specified as follows on FAP (Fortran
Assembly Program) cards:

Location Operation Contents

10 BCD Heading sentence. Inserted in first line of input and
final output page. Also inserted in heading of each
interrupt page.

20 DEC Nuclear charge. Floating or fixed point number.

21 DEC Internuclear separation, R. Floating point number.
Up to nine R values permitted to be run consecutively.

30 DEC Number of syrmmetry-orbitals basis functions, ac-
cording to symmetry. Order is #0g, #au, #ftu, # 7rg,
#6 #6u , #-Yu, #7 g. The total number of symmetry-
orbitals basis functions is limited by

Nj + 1) s 144,
2)

where N> is the total number of symmetry-orbital
basis functions of X symmetry.

40 DEC Number of closed-shell molecular orbitals, accord-
ing to symmetry. Order is #ag, #au, #7ru, #iTg, #6g,
# 6u, #-Yu, and #Yg closed shells.

50 DEC Number of open-shell electrons, according to
symmetry. Order is #ag, #au, #7u, #yTg, # 6g, #6 u ,
#Yu, and #yg open-shell electrons. No more than
one open shell per symmetry is permitted.

60 DEC Open-shell alpha coefficients. Listed in Table V.

80 DEC Open-shell beta coefficients. Listed in Table V.

100 DEC Quantum number N for symmetry-orbitals basis
functions given above. Order is ag, a' ,au, GU,.... ... .... 7r 7g $
bu, 6Yu' ,Yu, •,.. , Yg 'Yg. ... Limit is
Ns6.

133 DEC Quantum number L for symmetry-orbitals basis
functions given above. Order is same as for
quantum numbers N order. L - 3.
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Location Operation Contents

166 DEC Orbital exponents for the symmetry-orbitals basis
functions given above. The order coincides with that
of N and L just preceding. All orbital exponents
must exceed the input threshold (normally 0.100).
In addition, the difference between orbital exponents
for symmetry-orbitals basis functions with the same
N and L value must be greater in absolute magnitude
than a given threshold (also normally 0. 100).

200 DEC SCF input vectors. No more than 200 total vector
components are permitted.

400 DEC Indices of symmetry-orbitals basis functions whose
orbital exponents are to be varied and mutually op-
timized. One, two, or three orbital exponents may be
simultaneously optimized. Each set of indices must
be separated by a zero. The basis functions are
numbered in the order given above where the N, L,
and orbital exponent values are listed. A typical
variational chain might be 1, 2, 0, 3. This would
specify that the orbital exponents of symmetry-
orbital functions 1 and 2 are simultaneously optimized,
and then the orbital exponents of symmetry-orbital
function 3 is singly optimized. In preparing the
coupling chains, always put the most energy-
sensitive orbital exponent first in the indices.

420 DEC Increment for the variation of the symmetry-orbitals
basis functions orbital exponents. Loaded in the same
manner and sequence as the indices immediately
preceding, except that the increments replace the
indices. If any particular increment or all the in-
crements are not explicitly given, or if any are less
than 0.001, 10% of the orbital exponent involved is
employed in the variation. The set of increments
is called the mesh of the variation.

SCF Convergence Control

440 DEC N Diagonalization SCF Threshold Bias. 1:_ N - 5,

and normally program is set to N = 1.

441 DEC N Number of SCF Extrapolations. 5 -< N -5 25, and
normally program is set to N = 5.

442 DEC N Number of Prior SCF Extrapolations. 0 -< N - 25,
and normally program is set to N = 0.
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Location Operation Contents

443 DEC N Number of Diagonalization Iterations. 5 s N :- 25,
and normally program is set to N = 5.

444 DEC Number of Locked Passes Prior to SCF. 0 -< N 5 9,
and normally program is set to N = 0.

445 DEC N Maximum Number of Extrapolations. 5 5 N -< 100,
and normally program is set to N = 50.

446 DEC N Extrapolation Method. N = 1 for Hartree-Roothaan
Method, N = 2 for Sack Method. Normally program
is set to N = 1.

447 DEC N Diagonalization Method. N = 1 for SVDG (Single
Vector Diagonalization), and N = 2 for Jacobi. Nor-
mally program is set to N = 1.

448 DEC 25 Computes expectation values of 1, (sin~ea)/ra
(coszea)/ra, 3zz - r , 1/ra , , r , zz, and xa + yz.

449 DEC Quadratic one-dimensional exponent variation
employed.

Intermediate Output Requests

460 DEC *Intermediate matrices printout. S, U, T, , and
matrices are printed in format*.

461 DEC *S-Matrix, its eigenvalues, and vectors are printed
in format*.

462 DEC *Final matrices S,H,P,Q, D-Open, D-Total, F-Open,
F-Closed, R-Open, and R-Closed are printed in
format*.

463 DEC *Integrals between final orbitals, H-integrals, P-
integrals. Q-integrals, and La Grangian multipliers
are printed in format*.

464 DEC *F Matrix, its eigenvalues, and vectors are printed
in format*.

465 DEC 1 SCF iterations are printed.

*Gives the printout format (always off line):
If * equals I, the output will be eight-column
floating point decimal.

If * equals 2, the output will be eight-column
fixed point decimal.

466 DEC Print final vectors of intermediate results during
variation run.
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Location Operation Contents

470 DEC Integration truncation cutoff value in floating decimal.
If omitted, a standard value is used: RTRUN = 60.
This assumes no STO's are more diffuse than a hydro-
gen IS function.

476 DEC Only used in variation runs. Number of Neumann ex-
pansion terms to be included in exchange integral cal-
culations. The maximum number of terms permitted
is (30 - Mmax), after which record is kept of any ex-
change integral that does not meet the threshold of
10-6, and computations are continued.

477 DEC 1 Save current input flag. Current input will be re-
used with any modifications as read in for the next
case; it does not save itself.

480 OCT NSIMP000001. Number of Simpson's-rule points in

octal. The maximum number of points is 70.

481 OCT NPETAOOOONPXI. Number of Gaussian points in
octal used in the double Gaussian numerical inte-

grations. NPETA and NPXI may take any of the
values 12, 16, 20, 24, 30, or 36 points (in decimal).
If no grid is specified, a 30 x 30 grid is employed.

482 DEC 1 Output flag to call for eight-column floating point
decimal print-out (off line) to addends to J and K
supermatrix elements for exchange and coulomb
passes.

500 BCD Symmetry symbol list, only if order of molecular
orbitals departs from the order I 0g, 2 0 g, ....

1 u zou, .. I uI TU, . ... , 1 g, 2 11g,
1 6g, 2 6g. 1 6u, 2 6u, ... gYu, 2Yu I lig,
ZYg,.

3. Operating Instructions

a. To Start Any Run

1. Mount LMSS-AA-SCF No. 1 tape on B7.
2. Mount blanks on B3, B4, B5, AS, A6, and A7.
3. Mount output tape on A3.
4. Place deck in card reader headed by molecule card.
5. Clear, put SSW 1, 4, and 5 down.
6. Load cards.
Program will load cards and proceed with computation.
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b. To Interrupt

1. Place SSW 3 down.
2. Within 1-60 minutes, run will stop and print out on-line interrupt

sentence.
3. Unload tapes B7 and B5, and save these tapes for subsequent continua-

tion of computation.

c. To Restart Interrupted Run

1. Mount tapes B7, and B5 saved in interrupt procedure.
2. Place blanks on B3, B4, and A3, A5, A6, and A7.
3. Place INTERRUPT-RESTART card in card reader.
4. Clear, put SSW 1, 4, and 5 down.
5. Load INTERRUPT-RESTART card.
6. Computations will be continued from interrupted point.

d. Also Note

I. Description of emergency procedure on page 40.
2. Details of interrupt output option on pages 39 and 40.
3. Channel a tape option on page 40.
4. Program STOP with END in IR 4, 5, 6, 7 lights is normal conclusion.

e. Sense Switch Controls

SSW Function
1. If down, program considers current input to be last case.
2. If down, exponent variation will be terminated at current iteration,

and final output page printed.
3. If down, computation will be interrupted and tapes written for subse-

quent continuence of computation at point of interruption. See following
paragraphs for output option at this point.

4. If down, input is called from cards. If up, input is called fromtapeAZ.
5. If down, tapes AS and A6 are used for saving and editing of two electron

potentials during exponent variation. If up, tapes A5 and A6 are not
used at the expense of computer time.

6. If down, current internuclear distance in a series of values is con-
sidered as last one.

f. Interrupt

The depression of SSW 3 interrupts the current molecular computa-
tion. The computer will come to a program stop after printing an interrupt
message on the one-line printer.* The stop will occur within 1-60 minutes
of the time SSW 3 is pressed. Tape B5 must be saved for restarting of
computations.

*If a full requested output at the time of interruption is desired, push SSW 3 up after the stop has

occurred, and press the START button. The output will be written on tape A3, and the computer will
come to a second program stop.
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For restarting of interrupted computation, tape B5 should be re-
mounted with program tape on B7. Blanks on B3, B4, A5, A6, and A7.
Machine is cleared and interrupt restart card loaded. Computations will
restart at point of interruption.*

g. Emergency Procedure

Should computations stop at an unexpected point, or should the
tapes give trouble, provide new tapes as follows:**

1. Ready EMERGENCY RESTART AND RECOVERY card in
reader.

Z. Clear machine; load cards.

USE OF EMERGENCY PROCEDURE WILL LEAD. TO A LOSS OF NO MORE
THAN 60 MINUTES OF COMPUTATION.

h. Channel A Tape Option

If the heavy use of tapes A5 and A6 leads to continued difficulty
after new tapes have been provided, computations may be continued less
efficiently without the use of these tapes as follows:

1. Clear machine at any time other than when tape B3 is being

referenced.

2. Put SSW 5 up.

3. Load EMERGENCY RESTART AND RECOVERY CARD.

If the restart fails (very unlikely), use the emergency procedure.

Directions will appear on on-line printer.
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THE ELECTRONIC STRUCTURE OF DIATOMIC MOLECULES. III. A. HARTREE-FOCK WAVE FUNCTIONS

1 2 + 2 2+
AND ENERGY QUANTITIES FOR N2 (X Z+) AND N2 (X Zg, A 2Iu, B Zu) MOLECULAR-IONS.

Paul E. Cade and K. D. Salest

Laboratory of Molecular Structure and Spectra
Department of Physics, University of Chicago

Chicago, Illinois 60637

Arnold C. Wahl

Chemistry Division, Argonne National Laboratory
Argonne, Illinois*

and

Laboratory of Molecular Structure and Spectra
Department of Physics, University of Chicago

Chicago, Illinois 60637

ABSTRACT

The problem of the convergence of a sequence of Hartree-Fock-Roothaan wave

functions and energy values to the true Hartree-Fock results is examined for N2 (X 17).

This critical study is based on a hierachy of Hartree-Fock-Roothaan wave functions

which differ in the size and composition of the expansion basis set in terms of STO

symmetry orbitals. The concluding basis set gives a total Hartree-Fock energy of

-108.9956 Hartrees and Re (HF) = 2.0132 Bohr for N2 (X Iz).

Results are also presented from direct calculations for three states of the
+ 2 + 2 2N2 molecular-ion (X Z g A H , 2+) which are also thought to be very close approxi-

mations to the true Hartree-Fock values. The results give EHF = -108.4079 H.,

-108.4320 H., and -108.2702 H. and R (HF) = 2.0385 B., 2.134 B., and 1.934 B. for the
2 + 2 2 + +CX Z , A I , and B Z states of N respectively. Extensive calculations for various

R values establishes that the X 2Z+ and A 2Hu states are reversed in order relative tog

experiment, a shortcoming ascribed to the Hartree-Fock approximation.

I. INTRODUCTION

This is the third in a planned series of papers from this laboratory whose

objective is to obtain Hartree-Fock wave functions for the ground state and certain

excited states of diatomic molecules, and from these wave functions to calculate many

expectation values of the electronic coordinates, certain molecular properties, and

the electronic charge and momentum density for each molecular orbital as well as for

the entire molecule. All of these calculations are made for several internuclear

separations. The longer range objective of this series is to pruvide a solid and

Research reported in this publication was supported by Advanced Research Projects

Agency through the U.S. Army Research Office (Durham), under Contract DA-11-022-ORD-3119,

and by a grant from the National Science Foundation, NSF GP-28.
tPresent address: Department of Chemistry, Queen Mary College, London, England.

*Present address.
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extensive platform from which to begin a critical re-examination of the theory of the

electronic structure of small molecules. This extensive platform will consist of cal-

culations for homologous and isoelectronic series of diatomic molecules to approximately

the same level of accuracy.

In another perspective, this series of theoretical studies might be viewed as

"dry" experiments. One may recall the immense early successes Mulliken, Herzberg and

others had in the interpretation of the electronic structure of diatomic and polyatomic

molecules in terms of the nature of their molecular orbitals as gleaned from the elec-

tronic spectra of these systems. In as much as this series of studies is able to obtain

accurate molecular orbitals, we hope to extend these studies to molecules yet unobserved,

and in particular to explore a host of expectation values and molecular properties not

available from the corresponding spectral data.

The first paper in this series dealt with the Hartree-Fock-Roothaan equations

for diatomic molecules, especially for homonuclear diatomic molecules, and discusses at

length the organization of the computer program to calculate efficiently and rapidly

the supermatrix elements and perform the SCF procedure. Results are also presented by

Wahl1 for F (X lz+) as a prototype molecule. The second paper of this series 2 deals2( g-

primarily with extensive calculations on CO(X 1Z+) and BF(X 1X+) and also discusses
g g

the partner heteronuclear diatomic SCF computer program with emphasis on iny differences

from the description given by Wahl.1 Further members of this series will include results

for Li2 (X 1Z+), Be (lZ+) B 2 (X 3Zg), C2 (a 1 Z +, A' 3Z-), and 0g(X 3g, lAg, b Z+) to
2~ andgO2 9 9 2 (X 3 9a 9 b 9+

complete this study of the first row homonuclear diatomic molecules; results for

Na 2 (X 1Z+) CL 2(X 1:+) and eventually all ground configuration states for all second

row homonuclear diatomic molecules; results for the first and second row hydride mole-

cules, AH; results for first row oxides, AO, and fluorides, AF, a number of other im-

portant heteronuclear diatomic molecules (including BN(a lZ+), NO(X 2 , A 2Z+),

CN(X 2Z+, A 2H), LiCL(X lZ+), and a number of other small heteronuclear diatomic mole-

cules some of which have not been experimentally identified).3 As a matter of course

each presentation will usually include calculations for several positive and/or negative

ions of the parent system and potential curves as well for all ground configuration

states.

1 A. C. Wahl, J. Chem. Phys. 41, 2600 (1964).

2W. Huo, "SCF Wave Functions and Computed Properties for CO and BF", to be published

in J. Chem. Phys.
3 The scope of this study will eventually include certain excited states of a given dia-

tomic system and thus the specific state(s) involved will have to be clearly designated.

It is therefore convenient to employ the spectroscopic designation for the state in

question where it is available and applicable.
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The three general objectives of the present paper are:

i) To report the Hartree-Fock-Roothaan wave functions for N2 (X 1+) andg-

N+(X 2Z+, A B 2u), molecules and molecule-ions for a range of R values. A

number of expectation values of electronic coordinates, certain molecular properties

and charge density contours of the various molecular orbitals are given in subsequent

members of this series, III. B and III. C.

ii) To provide considerable documentation of the study of the convergence of

the expansion method (see Section II) toward limiting behavior with respect to-the

total energy and certain molecular properties. This limit should be the Hartree-Fock

result. This study is essentially a problem in numerical analysis, but since the

results in this series are intended to represent the Hartree-Fock results as closely

as practically possible, it is a rather important item to be considered. In addition,

the reasons for the choice of many of the methods employed, in this and later members

of this series, to obtain the expansion basis set will become evident. In paper IV of

this series a similar documentation is given for Li2(X iZ+).
g-"

Iii) To give the general prospectus for this and projected remaining members

of the series in regard to objectives, methods, and nomenclature.

The general discussion of the behavior of the electronic charge distributions

is deferred to contributions dealing with various homologous and isoelectronic series.

Such studies are primarily being developed directly in terms of charge density con-

tours and charge density difference contours and will eventually also include popula-

tion analysis and localized molecular orbitals. Such an effort for the first row

homonuclear diatomic molecules is now in progress.

The remainder of this section is devoted to a consideration of the importance

of certain new experimental methods for measuring directly the properties of individual

molecules and a brief review of previous calculations on the nitrogen molecule. In

Section II the basic theory underlying this series of papers is briefly reviewed for

completeness and to emphasize certain practical difficulties.

The electronic structure of the nitrogen molecule has been studied experi-

mentally and theoretically by many investigators and using a variety of experimental

methods. A large part of our present understanding of the electronic structure of

nitrogen has come from years of careful study of the electronic spectra of nitrogen

and nitrogen molecular-ions. This has provided accurate dissociation energies for

N2 (X Il1) and N+(X 2 z+), ionization potentials, much information about the nature of

the molecular orbitals, and other useful molecular quantities. The electronic spectra
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of the nitrogen-(nitrogen-molecular-ions) system is one Of the most well understood

(though far from completely), and thoroughly studied. '5 The easy availability,

relatively great stability, and traditionally important chemical status of nitrogen,

has often led to the use of nitrogen in experimental studies employing new high resolu-

tion apparatus or in the introduction of innovative experimental methods to study

simple physical processes. One might recall the innovative experimental studies of

Fox and Hickam 6 and Frost and McDowell 7 in determining several electron impact mole-

cular-ion appearance potentials or vertical ionization potentials of nitrogen for
+

various excited states of the N2 molecular-ion formed, studies which nicely complement

the far ultraviolet Rydberg-series spectra of nitrogen; the new work of Al-Joboury and

Turner 8 on Photoelectron Spectroscopy which is particularly useful for determining

higher ionization potentials as is demonstrated for the ionization of N2 to N and

this method is also suggestive as to the bonding type of the molecular orbital involved

in the ionization process; the recent success of Buckingham and associates 9 in the

direct measurement of the electric quadrupole moment of simple molecules, including

N2 , and for the first time providing unambigously the sign of the electric quadrupole

moment. Previous experimental estimates of the electric quadrupole moment of simple

molecules have come chiefly from line broadening measurements and pressure induced

rotational or vibration-rotational spectra and give only the magnitude of the elec-

tric quadrupole moment.

4R. S. Mulliken, in The Threshold of Space, edited by E. B. Armstrong and A. Dalgarno,

(Pergamon Press, Inc., New York, 1957), P. 169. A complete survey of the nitrogen

spectra and state through 1956.
5A. Lofthus, "The Molecular Structure of Nitrogen", University of Oslo, 1960, Blindern,

Norway.
6R. E. Fox and W. H. Hickman, J. Chem. Phys. 22, 2059 (1954).

7D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London), A230, 227 (1955).

8M. I. Al-Joboury and D. W. Turner, J. Chem. Soc. (London), 983 (1963).
9A. D. Buckingham, J. Chem. Phys. 30, 1580 (1959); A. D. Buckingham and R. L. Disch,

Proc. Roy. Soc. (London) A275, 275 (1963), and private communication.
1 0J. A. A. Ketelaar and R. P. H. Rettschnick, J. Molecular Phys. 7, 191 (:963), give

one of the latest result of this kind.
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Molecular beam magnetic and electric resonance measurements have continued to

provide an additional and potentially very valuable source of information about the

electronic structure of simple molecules. N. F. Ramsey and associates have recently

begun an extensive program to measure the molecular magnetic rotational moment of

small molecules and have measured the magnetic rotational moment of N15N1 5 . In addi-

tion, the spin-rotational interaction constant, that is, the interaction constant

between the nuclear magnetic moment and the rotational magnetic moment, has been

measured for N1 5N 1 5 and have yielded the nuclear magnetic antishielding constant for

the nitrogen nucleus.
1 2 The corresponding measurements have not been made for N 14N

1 4

due to experimental difficulties and hence no nuclear quadrupole coupling constant,

eqQ, is yet available from molecular beam magnetic resonance methods since N1 5 nuclei

have spin 2 and no electric quadrupole moment. The nuclear quadrupole coupling con-

stant at the N1 4 nucleus has, however, been measured in the solid phase of nitrogen,

most recently by Scott. 1 3 These experimental quantities, the magnetic rotational

moment, the spin-rotation coupling constant(s), the quadrupole coupling constant, and

the related quantities are relatively new sources of valuable information about the

charge distribution in simple molecules.

The study of collision or scattering processes involving small molecules has

also provided much new and interesting information relating to the electronic struc-

ture of simple molecules, including nitrogen. The variety of these newer experimental

methods ranges from elastic and inelastic scattering of slow electrons from molecules,
14

through electron impact spectroscopy, a new tool which offers great promise of

complementing optical spectroscopy in providing means of studying usually forbidden

electronic transitions in atoms and molecules, to the difficult problems involving the

collision of charged or neutral atoms or molecules with molecules, or simply, chemical

reactions. Gerjuoy and Stein 1 5 have theoretically studied the rotational excitation

of homonuclear diatomic molecules by slow electron collisions and in particular have

made calculations for nitrogen. This theory makes use in an important way of the

1 1 N. F. Ramsey, Bull. Amer. Phys. Soc. a, 89 (1964), and paper presented at the

American Physical Society Moeting, January 25, 1964.

12 M. R. Baker, C. H. Anderson, and N. F. Ramsey, Phys. Rev. 133, A1533 (1964).

1 3T. A. Scott, J. Chem. Phys. 36, 1459 (1962).

14A. Kuppermann and L. M. Raff, Disc. Faraday Soc. 35, 30 (1963).

1 5E. Gerjuoy and S. Stein, Phys. Rev. 97, 1671 (1955).
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details of the electronic charge distribution of the nitrogen molecule. Schulz 16 has

recently suggested the existence of a short-lived intermediate species, N2 :e-, in the

interpretation of his experimental data on the scattering of slow electrons from

nitrogen. An excellent review of these and other low energy collision processes has

been given by Biondi,1 7 where many additional references are listed.

The scattering of fast electrons (30 to 50 key) from molecules has long been

useful in determining molecular geometry from the electron diffraction of gases. As in

X-ray diffraction of crystals (or gases), the X-ray scattering factors of the con-

stituent atoms of the molecule are universally employed to interpret the electron dif-

fraction measurements. In both X-ray crystallography and electron diffraction, the

molecular scattering factor is simply assumed to be the superposition of the atomic

scattering factors for the constituent atoms and except for vibrational corrections,

no account is taken of the effects of chemical bonding and the modification of the

superimposed atomic electronic charge distribution due to molecule formation. This is

almost always an excellent approximation, but very careful X-ray measurements have

revealed small effects in certain cases which may be ascribed to the intrinsic mole-

cular character of the scattering system. The recent improvements in the techniques

and interpretation of electron diffraction measurements for diatomic molecules have
18

initiated studies by Bartell and Kuchitsu, to detect anharmonic vibrational effects

in N2, 02, NO, and C2, and Hansen
1 9 has recently suggested a method for obtaining

atomic scattering factors from high precision electron diffreaction measurements on

simple molecules. In addition, Swick2 0 has been able to measure the elastic and

inelastic electron diffraction scattering pattern for N2 and other simple molecules.

16G. J. Schulz, Phys. Rev. 116, lll (1959); 125, 229 (1962).

17 M. A. Biondi, "Advances in Electronic and Electron Physics", 18, 67 (1963),(Academic

Press, Inc., New York).

18L. S. Bartell and K. Kuchitsu, J. Phys. Soc. (Japan), 17, Suppl. B-ll, 20 (1962).

Proce dings of the International Conference on Magnetism and Crystallography,

Kyoto, Japan, 1961.

19. p. Hansen, J. Chem. Phys. 36, 1043 (1962).

20D. A. Swick, J. Phys. Soc. (Japan), 17, Suppl. B-11, 12 (1962). Proceedings of the

International Conference on Magnetism and Crystallography, Kyoto, Japan, 1961.
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It is not too optimistic to expect that further improvements will eventually provide

evidence for "shifts" of the atomic scattering factors for atoms in different mole-

cular environments which are due to differential bonding situations. A review of the

calculations of X-ray and electron diffraction scattering factors for atoms and mole-

cules has been given by Roux and Cornille2 1 who emphasize the basic association of

these quantities with the electronic charge density of the atom or molecule. The

experimental measurement of the scattering of X-rays by simple molecules in the

gaseous phase seems to have been completely abandoned in recent years although measure-

ments were made by GaJewski
2 2 for nitrogen and several other simple molecules over

thirty years ago. The molecular scattering factor might play a more important role

in understanding the electronic structure of simple molecules if these experimental

developments are indeed realized and use made of the effects already observed. The

X-ray and electron diffraction scattering factors do contain the closest means avail-

able of direct (or semi-direct) measurement of the electronic charge density (coherent

scattering) and as Coulson has emphasized, the electronic momentum density (incoherent

scattering).

The preceding paragraphs have purposely emphasized newer, and to some extent

chemically unorthodox, kinds of experimental information measuring the behavior and

properties of the electronic charge distribution of small molecules. Experimental

results of this kind are partially available for N2 and a few other small molecules,

and it is hoped that further results will be rapidly forthcoming. There are many

other types of experimental studies involving the physical properties of small mole-

cules which could also be mentioned here. In addition, the variation of molecular

properties with vibrational state of the molecule, and hence information about the

change of the electronic charge density with nuclear separation, is possible. It is

the general contention of this paper, and indeed of this series of papers, that these

molecular properties, these newer and mare demanding probes into the electronic charge

density of small molecules, should and will play a more prominent role in understanding

more fully the electronic structure of small molecules. Paper III. B of this series

will deal with certain of these molecular properties for N2 and N+ molecular ions, but

others, and particularly the scattering problems remain temporarily beyond the scope

of this series.

21M . Roux and M. Cornille, Cahier Phys. 16, 45 (1962).

22H. Gajewski, Phys. Z. 33, 122 (1932).
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The theoretical attempts to understand the nitrogen molecule, and in parti-

cular to explain the great stability and inertness of nitrogen, began rather early nd

two simple molecular models were those discussed by Langmuir and Sommerfeld. The model

of Langmuir, which was a static model 2 3 based on empirical chemical evidence and the

Lewis octet theory, envisioned the nitrogen molecule as arising from two nitrogen atoms

with unchanged K shells, eight of the remaining electrons forming a Lewis octet, and

the last two electrons were embedded in the octet such that an increase in stability

resulted (see Fig. la). The dynamical model of Sommerfeld (which was first suggested

by N. Bohr in 1913) was one of the several, now forgotten, attempts to extend and test

the Bohr model of atomic hydrogen to other atoms and to diatomic molecules.

Sommerfeld's nitrogen molecule (shown in Fig. lb), consisted of two nitrogen atom

cores, with a charge of +3 each separated by a distance R, and the six remaining elec-

trons all revolving in the same orbit and direction half-way between these two nitrogen

atom cores.

It is interesting to note that fifty years later a "Modified" Lewis-Langmuir

octet model based on the necessity of coulombic and exclusion repulsion between the

electrons of a molecule has been proposed by Linnett.2 4 The Linnett model for nitrogen

is illustrated by Figs. lc and ld and only the ten valence shell electrons are con-

sidered. Five electrons are assigned to each spin and these five electrons of each

set will be situated at the corners of two tetrahedra having a common face (Fig. lc

for spin up and Fig. ld for spin down). These two sets are superimposed, but the two

triangular sets in the bond region may be staggered with respect to one another.

The first major attempt of any kind to calculate the electronic density of N2

(and also F2 ), after the advent of quantum mechanics, was the effort by Hund in 1932

using the Thomas-Fermi approximation. The valence bond, or Heitler-London-Slater-

Pauling, method could suggest a reasonable interpretation for the nitrogen molecule,

but since at least three "bonding pairs" were involved, ab initio valence-bond calcu-

lations for the full six (or ten) valence shell electrons were very difficult.
make

Kopineck2 5 did, howeverL/certain valence bond calculations in 1952 for both the six

and ten electron cases following the methods of Hellmann. The most extended valence

23It is interesting to read the heroic attempts on the part of A. Lande in 1917 and

1918 to provide a dynamical justification of the octet model.

24J. W. Linnett, "The Electronic Structure of Molecules", (John Wiley and Sons, Inc.,

New York, 1964).
2H. Kopineck, Z. Naturforschg. Ta, 22, 314 (1952).
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bond (or atomic orbital) method calculations seem to be the unpublished results of
26

T. Itoh, obtained in this laboratory, which yielded a dissociation energy of 5.03 eV.

Huber and Thorsen2 7 have also made certain valence-bond calculations for the

X 1Z + - A 37+ excitation energy for N2 .

Molecular orbital calculations have proved much more manageable and there has

been a steady stream of LCAO-MO-SCF calculations for N2 from this laboratory and

others. Scherr28 made calculations in which the molecular orbitals were approximated

by ls, 2s, 2p6, and 2pv* STO orbitals on each nucleus. In his pioneering study, Scherr

used the Slater orbital exponents with no optimization of these non-linear parameters.

Ransil,2 9 and Fraga and Ransil 30 then determined LCAO-MO-SCF wave functions for N2 at

Re(Exptl.), and for a range of R values, again using the minimal valence shell Slater-

type expansion functions, but the orbital exponents were optimized at R e(Exptl.).

Fraga and Ransil3 1 also made limited configuration interaction calculations based on

the minimal basis set Just mentioned. Clementi 3 2 made the next small improvement by

adding a 3dn STO to the minimal set and optimizing the orbital exponent of the new

function. Richardson3 3 has given the real start of the extended basis set LCAO-MO-SCF

calculations for N2 in his "double-C" expansion set, in which the molecular orbitals

are approximated by one ls, two 2s, two 2pa, and two 2pn STO functions on each nucleus.

Richardson was able to perform only crude optimization of the non-linear variational

parameters. In unpublished research, Richardson also made several useful calculations

of certain N+ states of this same quality. Only recently, Nesbet 34 has published a2

much more extended LCAO-MO-SCF calculation for N2. This last calculation and parallel

ones for several other molecules are near the depth of study intended in this series.

26 R. S. Mulliken, in lectures on "Problems Concerning the Electronic Structure of

Diatomic Molecules", Autumn quarter, 1961, University of Chicago.
2 7 "L. M. Huber and W. Thorsen, J. Chem. Phys. 41, 1829 (1964).

28C. W. Scherr, J. Chem. Phys. ?3, 569 (1955).

29B. J. Ransil, Rev. Modern Phys. 32, 245 (1960).

30B. J. Ransil and S. Fraga, J. Chem. Phys. M, 669 (1961).

31S. Fraga and B. J. Ransil, J. Chem. Phys. 36, 1127 (1962).

3 2E. Clementi, Gazz. Chimica Ital. 91, 722 (1961).

33J W. Richardson, J. Chem. Phys. M, 1829 (1961).
34R. K. Nesbet, J. Chem. Phys. J4Q, 3619 (1964).

101



In the present endeavc.., no critical comparison of these various LCAO-MO-SCF

results for N2 with the results here given is attempted. This is chiefly because the

present calculations contain a hierachy of different results, certain of which are com-

parable to these earlier results, and these seem more suitable for the comparative

investigations herein discussed.

1
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II. THE HARTREE-FOCK AND HARTREE-FOCK-ROOTHAAN EQUATIONS

In the Hartree-Fock approximation the electronic wave function is written

n= [(2N)] ( 1a)[l( )2 .... (Na) 2N-(NP)2N] , II.1

for the system containing 2N electrons with the closed shell configuration specified

by the set of N orthonormal space orbitals 91, and having the state symmetry symbol

alZ+" or lZ+).35  A single Slater determinant suffices for a closed shell configuration,

for a closed shell configuration plus one extra electron in an open shell or a closed

shell configuration with one hole to form an open shell, and for those open shell con-

figurations which arise if all open shell Ti have the same spin function (that is,

states for Ms = S S). If there are several electrons in a single open shell, or elec-

trons distributed in open shells of different symmetry, the wave functions for the

open shell configuration of definite state symmetry n can be written in the form,

= ,11.2

where the Kw are single Slater determinants of the form in Eq. II.1 ordered by the

superscript K. This index K identifies the possible various choices from the degener-

ate members of molecular spin orbitals available to the electrons in the incomplete

shells. 3 6 The CK in Eq. 11.2 are determined entirely by symmetry requirements, that

K
is, by combining the () to form D of a definite state symmetry, n. The short sum

in Eq. 11.2 is not to be confused with "configuration interaction" and indeod con-

figuration interaction wavefunctions for open shell systems might be written as sums

3 5 The notation given in this section folloWs tnat employod IIn C. G. J. Roothaan, Rev.

Modern Phys. 23, 69 (1951); ibid, 32, 179 (1960); C. C. J. Roothaan and P. S. Bagus,

in Methods in Computational Physics, edited by B. Adler, S. Fernbach and M.Rotenberg,

(Academic Press, Inc., New York, 1963), p. 47ff. These three papers will be referred

to as Tl, T2, and T3, respectively.

36Numerous examples of wave functions of the form of 11.2 occur in the li# rature and

basic texts. A convenient collection of such forms for Dwh or C v symmetry mole-

cules is given by S. Fraga and B. J. Ransil in "Formulae for the Evaluation of Elec-

tronic Energies in the LCAO-MO-SCF Approximation", Technical Report 1961, Laboratory

of Molecular Structure and Spectra, University of Chicago, pp. 236ff. The formulae

given by Fraga and Ransil really have nothing to do with the LCAO approximation.
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of selected with coefficients determined by the variational method. It is quite

proper to refer to both expressions II.1 and 11.2 as "single configurations" since in

both cases a unique set of space orbitals, 91, is implied. In open shell cases this

set of space orbitals, T.' may give rise to several states (,Q) in which only the set

of coefficients CK will differ. (For example the X 3Z-, a 1Ag, and b 1X+ states of
g

The total energy expression for a wave function of the form of 11.2 (and also

I1.1) may be written

E= N NH~ + Z
X'i ?%,i 4L1J

- , ,NmXN n m,4 n + R-- 11.Z3
,m 4,n~ 'Wm~ a>J3 ±

where the sums over both closed and open shell molecular orbitals of symmetry 7% or p.

are indicated by i and J, and sums over only open shell molecular orbitals are indi-

cated by m and n. The last sum, over a>P, is Just the nuclear repulsion term(s). Nix

is the number of electrons in molecular orbital i of symmetry X, and HiA is the

familiar one-electron integral contributions. The second and third terms here parallel

those given by Roothaan and Bagus3 5 in T3 and are valid for a wide range of open shell

configuration cases. (But please note, no expansion method, or LCAO molecule orbitals,

has been introduced at this point.) The expressions for 9i, J and @?m, n are

7 %iiu~ j Y% m , p n

and 11.4

Q7m,4n= aiv 7m,pn- ±vYm,4n

The and R ,J are two-electron integrals involving both closed and open shell

molecular orbitals, 9., and the , and n are two-electron integrals invol-

ving only the open shell molecular orbitals, Tm. The av and PwLv are the open shell

coefficients and are obtained from the CK of Eq. 11.2.

If the total energy, as expressed by Eq. 11.3, is minimized with respect to

the orthonormal set of functions 9i (the molecular orbitals), which occur in the inte-

grals, Hi%, Vi,,j' and Q7%m,4n' one obtains the usual Hartree-Fock equations:

and Ck5 m - 11.5
FO(Pk, Vm)Tn - enn ,
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for the closed shell molecular orbitals (indicated by Tk and pj) and for the open shell

molecular orbitals (indicated by rm and pn ) , respectively. Solution of this set of

coupled integro-differential equations for the (k and (m molecular orbitals and using

Eq. 11.3, gives the lowest energy possible for a wave function of the form of Eq. 11.1

or 11.2. Since the operators FC(Pk, M ) and Fo(ckT m ) depend on the pk and cm sets, an

iterative procedure is required which yields the self-consistent field (SCF) wave func-

tion which is by definition the Hartree-Fock wave function. Thus when a direct

numerical solution of Eqs. 11.5 is possible, SCF wave functions and Hartree-Fock wave

functions are identical.

The above program is indeed realized for atoms as was vigorously exploited by

Hartree and many others. For electronic systems possessing less symmetry, direct

numerical solution of Eqs. 11.5 becomes much less inviting. If one considers diatomic

molecules and writes the Ti in terms of prolate spheroidal coordinates as

qi(r) = fi( ,q)g'(O) 11I.6

with the nuclei at the foci, then the Hartree-Fock equations, Eqn. 11.5, for a diatomic

molecule reduce to the general form
2

A f + B f + C -- f + D fi( ,O

+ E fi (,,) + f G fj( ,, = Eifi( ,Ti)

The coefficients A, B, C, D, and E are simple functions of , r, and the internuclear

separation, R, and the integrand G[fi( ,n)] is only intended to show the integro-

differential character of these equations. The explicit form follows simply from

equations and a discussion given by Lennard-Jones and Pople.
3 7 The Hartree-Fock wave

function for a diatomic molecule is thus to be gained from the numerical solution of

this set of coupled elliptic partial integro-differential equations in and n. Except

for an approximate treatment by Berthier 3 8 for H,, no serious attempts have ben pub-

lished. The numerical solution of partial differential equations in two variables has

37j. Lennard-Jones and J. A. Pople, Proc. Roy. Soc. (London), A210, 190 (1951).

38G. Berthier, in Calcul Des Fonctions D'Onde Moleculaire, Colloques Internationaux

du CNRS LXXXII. (Paris, 1958), p. 115.
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experienced some progress, but apparently the numerical solution of the coupled set of

Eqs. 11.7 still represents a formidable problem in this embryonic field of applied

mathematics (see Fox3 9 and Young for surveys of methods useful for simpler forms of

elliptic partial differential equations). It may not be too optimistic to-think that

it will be feasible to solve the Hartree-Fock equations for a few representative dia-

tomic molecules (for example, H2 , Li 2, LiH, N2 and CO) by direct numerical methods in

the next decade.

If an analytical form for the molecular orbitals, Ti' is now assumed, that is,

if they are expanded in terms of certain known functions;
3 5

Pia p ?pa Ci7p ' 11.8

the problem resolves to finding the linear expansion coefficients, CIV p , and an ade-

quate expansion in terms of the expansion functions, Xp . Following Roothaan and

Bagus3 5 in T3 the energy expression is written

E =HDT + o DT DQ DO + z 1

where$ and Q are now supermatrices with elements
35

51?,p, Lr ?pq,4±rs - _fA Xpq,Lurs

and II.10

Q? pq,irs = N~ ? q~r - 2 'aXvlpq,pLrs

Equation II.10 corresponds to elements of Eqn. 11.4. The supermiatrix elements are

thus constructed from electronic integrals involving the expansion functions Xp, •

The Hartree-Fock equations now become
35

and F c 65C II.11

Fc: ESC

39L. Fox, Numerical Solution of Ordinary and Partial Differential Equations, (Addison-

Wesley Publ. Co., Inc., Reading, Massachusetts, 1962).

40David M. Young, in a Survey of Numerical Analysis, edited by J. Todd, (McGraw-Hill

Book Co., Inc., New York, 1962), chap. 11.
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This series of papers deals with the solution of Eqs. II.11 for diatomic molecules and

specifically fpr the lowest state of any symmetry type arising from closed shells con-

figurations or configurations which have several open shells of different symmetry

(for example , n , 6n and so forth). These equations are here reproduced to serve

as a touchstone for this and following members of this series.

In choosing to solve the Eqs. II.11, one has thus bypassed relative incompe-

tence at the numerical solution of the Hartree-Fock equations for diatomic molecules

(Eq. 11.7) and substituted the relatively well developed machinery of matrix methods

and calculation of electronic integrals over analytic functions. In addition one has

also assumed the task of exploring the convergence of expansions given by Eq. 11.8 such

that true Hartree-Fock wave functions are obtained.

The expansion method has been referred to in the literature as the "Roothaan

Method", "Roothaan Scheme","extended basis set SCF", and called various other names.

We would like to propose that one refer instead to the expansion method in terms of the

Hartree-Fock-Roothaan Equations as given by Eq. II.11. This would thus imply on expan-

sion form as systematized by Roothaan 3 5 in Tl, indicate the adoption of the open-shell

formalism given by Roothaan and Bagus3 5 in T3, and, of course, imply the iterative

solution to invariance in the CiVp coefficients. One would thus be referring to a

specific genera of equations, flexible in regard to the extent of the expansion and

the nature of the expansion functions X .

This suggestion is primarily motivated by an attempt to clarify the term

"Self-Consistent-Field". The solution of the Hartree-Fock Equations (Eq. 11.5) yields

the Hartree-Fock wavefunction which is identical with the Self-Consistent Field wave-

function, that is, only if the 9, are exactly determined is the true self-consistency

of the independent particle model really achieved. In contrast, one may have a hier-

achy of Hartree-Fock-Roothaan Equations and Hartree-Fock-Roothaan wavefunctions, where

the members of the hierachy perhaps arise from different size or kinds of expansions

of the form of Eq. 11.8. The hierachy of Hartree-Fock-Roothaan wavefunctions thus

gradually approaches the Hartree-Fock wavefunction in a limiting manner. One must

remember that in speaking of LCAO-MO-SCF wavefunctions, or, as we propose, of Hartree-

Fock-Roothaan (HFR) wavefunctions, that the self-consistency merely means a certain

degree of invariance in the Ci p coefficients and does not mean the true self-

consistency of the independent particle model, except as the expansion converges to

the true Hartree-Fock orbitals 91.
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A remaining practical point may be noted before concluding this section. The

basic limitation on how large an expansion basis set may be employed depends on the

total number of unique r pq, rs and Q pq,4rs supermatrix elements generated. The

present versions of the Homonuclear and Heteronuclear diatomic SCF programs perform

the contraction of the supermatrices such that the entire or Q supermatrix must

occupy the rapid access memory of the computer (the 32K core for an IBM 7094). Thus

approximately 20000 total supermatrix elements are permitted. In terms of the total

number of expansion functions, X this requires that

1 n,(n. + 1) < Nma 11I.12
2max I11

where nA is the number of expansion functions of symmetry N. The present limit for

Nmax is 144 for homonuclear diatomic molecules and 172 for heteronuclear diatomic

molecules. Even as this is written, modifications are underway to remove these limits,

but the problem of computation time will go up sharply as still larger basis sets are

employed.
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±II. THE DETERMINATION OF THE BEST HARTREE-FOCK-ROOTHAAN WAVE FUNCTION

The most time consuming and tedious task leading to the results presented

here was the exhaustive study to determine the best basis set expansion, the optimal

non-linear parameters (orbital exponents) of the expansion functions, the behavior

towards convergence, and the effects of these various characteristics of the calcula-

tion on certain expectation values and molecular properties of the nitrogen molecule,

to be discussed subsequently. This study on nitrogen and the following one for Li 2,

was particularly exhaustive in order to provide useful general guidelines for similar

studies on other first row homonuclear diatomic molecules. This section will display

in detail the methods employed and conclude by presenting the final choice of the

Hartree-Fock-Roothaan wave function for nitrogen. Evidence will be presented in sup-

port of the belief, herein advanced, that this final result is a very close approxima-

tion to the true Hartree-Fock wave function.

A. Basis Expansion Functions and Molecular Parameters

The ground electronic configuration of nitrogen in terms of molecular orbitals

as established by molecular spectroscopy is written

N2 (X Ig) lg 21u 2 20g u 1 u3g,

where the molecular orbitals are in the order of decreasing orbital energy as obtained

from the analysis of the relative positions of the several Rydberg series ionization

limits of N2(X 1Z+). The use of the simply numbered symbols, 
1 6g, 26g, 36g, 1cu , 17Tug2

.. , is more suitable when dealing with extended basis set expansions for the mole-

cular orbitals. The familiar symbols, 6glS, 6g2 s, 6 g 2p, 6u lS, iu
2p, ..., which denote

the parentage of the molecular orbitals with respect to the separated atoms limit, will

be employed here instead to denote the individual STO symmetry molecular orbitals, as

is explained below. Another useful notation suggested by Mulliken, that is, writing

only the outer shell molecular orbitals as zt, y6, x6, w7, v,.. , is most useful

when dealing with homologous series of molecules involving different numbers of closed

inner shells of the separated atoms and for isoelectronic series of homonuclear and

heteronuclear diatomic molecules. This last notation will be employed in this series

only for such series of molecules. All of the calculations in this section for

nitrogen (X 1Z+) employ the experimental equilibrium separation, Re(Exptl.) =2.682.0e
g-

Bohr.
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The general expansion form of the various molecular orbitals was given in

Eq. 11.8. .he expansion functions, XpN.0 employed in this series of papers for homo-

nuclear diatomic molecules are given by

Xp - [Xnp-p?( a) + r Xn p N r b)].1

or explicitly

pU = (2 C)p [2(2np)f raP 1 epa Y2 N (ea,o)

+ 0 rb e p (b)J 111.2

Detailed definition of the spherical harmonics, Y m(,o), and the coordinate systems
141

employed are given by Wahl, Cade and Roothaan. This rather cumbersome subscript

notation on the expansion functions and the Slater-Type-Orbitals (STO's) should be

interpreted as follows: the expansion function XpXa , hereafter called a STO symmetry

molecular orbital, specifiesbasis function p (which defines np, ip, and Cp of the STO's

on centers a and b) of symmetry X (that is, 6 gg 6u ,u' 7  g' "'.) which defines INv

(INaI is the projection of the orbital angular momentum on the molecular axis such

that Ial = 0, 1, 2, ... lead to 6,w,6, ... STO symmetry orbitals) and ON. If

= (-) Xp is a gerade (g) function and 6N = (-) implies Xpxa is an ungerade

(u) function. The subscript a on Xp~a designates the subspecies of symmetry N and

specifies the N values from among * Aa or zero. The STO symmetry molecular orbitals,

as well as linear combinations to form the Ti~ag belong to an irreducible representa-

tion of the D h point group.

A simple shorthand procedure will be employed in discussing the expansion

basis sets. This is most easily conveyed by a few examples:

6 gls=2- [ ((a) + (b)] (a) + (b)
g =s X2s , 0 t 2p6 2p6 ,

I +
6 3d = 22 [X (a) + X (b)] 111.3

and analogous symbols for corresponding 6u STO symmetry orbitals except with minus

signs. The nu, flg, and higher type STO symmetry orbitals are similarly abbreviated by

4 1 A. C. Wahl, P. Cade and C. C. J. Roothaan, J. Chem. Phys. 41, 2578 (1964).
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r u2p, T 92p, 7T u3d, 7r d, where for exampleu g u gi
(a) (b)

7T Lp'27 + + p. 111.4
up (a) + (b)]

p7T + X2p_

that is, includes the degenerate members of different a subspecies. The distinction

between STO symmetry orbitals having the same symbol but different orbital exponents

will be made by primes. The basis set composition will refer to the specific make-up

(that is the set of n p, p of the expansion functions for each symmetry).

The restriction of these calculations to the employment of symmetry-adapted

expansion functions, XpLa, and hence symmetry-adapted molecular orbitals, Tika' is not

necessary and there has been doubts expressed by Lbwdin42 that such a choice really

represents an absolute minimum even to Hartree-Fock approximation. The employment of

symmetry-adapted molecular orbitals does, however, provide considerable simplification

in dealing with the large number of supermatrix elements as is disnussed by Wahl.
1

Even if it is useful to relax the restriction that the molecular orbitals, T,,,, be

symmetry adapted, it is important to realize that in so doing the expansion basis set

size would have to be considerably reduced for molecules as small even as nitrogen,

especially if any optimization of orbital exponents is desired, not to mention other

difficulties.

In the STO symmetry orbitals of Eqs. III.1 and 111.2, it is of course, neces-

sary that the functions centered on nuclei a and b be identical, that is, n p , N,

and Cp must be the same. Finally, it should be noted that basis set compositions for

6g and 6u type molecular orbitals, @i?' are completely independent. Thus, the corre-

sponding 6g and 6 u STO symmetry orbitals (if indeed they are corresponding sets) do

not have to have the same orbital exponents as was the case in the calculations by

Ransil and Fraga. The usefulness of this extra degree of functional freedom was first

pointed out by Huzinaga, 4 3 and Phillipson and Mulliken,4 4 and is discussed in part B

of this section.

42P. 0. Lbwdin, Rev. Modern Phys. 35, 496 (1963).

43S. Huzinaga, Proc. Theoret. Phys. (Japan) 19, 125 (1957).
4 4 P. E. Phillipson and R. S. Mulliken, J. Chem. Phys. 28, 1248 (1958).
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B. General Principles in Synthesizing the Expansion Basis Set;

Illustration for N 2(X + 45

In these calculations on nitrogen and in general in seeking solutions to the

Hartree-Fock-Roothaan equations, the problem of synthesizing the expansion basi-s set

may be conveniently analyzed in terms of the following questions:

lst) How is the basis set composition decided? That is, how many STO sym-

metry expansion functions are needed to adequately represent each molecular orbital

symmetry type and what kind of STO symmetry orbitals with respect to the Up, p, and

p values? If several STO symmetry orbitals with the same np and ip, but different

p values (such as, for example, 6 2p and 6 2p'), are used, how many of such multiple

form are recommended and with what spread or values of Cp'S? What is the quickest and

best manner to decide the basis set composition in terms of computer time? Associated

with these questions is the problem of deciding what role the related atomic Hartree-

Fock-Roothaan wave functions should play in contributing to representing at least the

inner shell molecular orbitals. These questions must all find answers such that the

total number of matrix elements satsifies Eq. 11.12.

2nd) What sequence, combination, and extent of optimization of the orbital

exponents, p, of the STO symmetry orbitals chosen to form the basis set composition

is necessary and useful? This question is more inextricably tied to the preceding

questions for small or inadequate basis sets, but may be treated as approximately

separated when large expansion basis sets are employed. As the existing program per-

mits one, two, or three Cp's to be optimized simultaneously, this question also

involves the assessment of the relative merits of the many possible combination schemes

of exponent optimizations. Also, how does the relative importance of optimization of

the Cp's depend on the original source of the starting Cp'S, for example Cp's from

atomic results for inner shells and Cp's from interpolation or extrapolation schemes?

45The basic problem considered in this section has also been dealt with extensively by

Bagus, Gilbert, Roothaan, and Cohen, for the first row atoms. While the general

procedures to obtain very accurate approximations to the Hartree-Fock wave function

are basically similar in atoms and diatomic molecules, practical difficulties pre-

vent the more exhaustive methods used for atoms from being used for diatomic mole-

cules.
46P. Bagus, T. L. Gilbert, C. C. J. Roothaan, and H. D. Cohen, "Analytic Self-Consis-

tent Field Functions for First-Row Atoms", to be submitted to Phys. Rev, for publ.
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3rd) How close is the best Hartree-Fock-Roothaan SCF wave function to the

true Hartree-Fock SCF wave function? How is this to be measured? For atoms, iany

cases exist where numerical Hartree-Fock wave functions have been determined and a

direct point by point comparison with the Hartree-Fock-Roothaan wave functions is

possible. These comparisons have been very encouraging in most cases. 46 Such a

direct comparison with diatomic molecules is not possible unless a few Hartree-Fock

wave functions are obtained by the numerical solution of Eq. 11.7. Other means must

then be found to indicate the convergence of these calculations toward the true

Hartree-Fock result.

In the broader and purely mathematical sense, the problem of the rate of con-

vergence of the approximation of the molecular orbitals, 9Val should also deal with

the nature and form of the expansion functions, Xp,. That is, whether other analytic

forms of XpNC might be generally or specifically advantageous. Even the consideration

of different kinds of expansion functions for different purposes might be useful. The

commitment to the STO symmetry expansion functions of Eq. 111.2 in this series of

papers, is based largely on a background of success and no serious practical com-

petitors and not on any formal demonstration that such a form minimized the number of

terms in the expansion of Eq. 11.8.

4th) What role can the various molecular properties and expectation values

play as criteria of the convergence towards Hartree-Fock results? Strictly speaking

the progression of calculations steadily and monotonously improves the total energy,

but this gradual improvement provides no assurance that the wave function is an equally

good approximation to the true Hartree-Fock wavefunction in all regions of space. The

convergence of the total energy may mask serious deficiencies in the wave function and

the problem is to discover how to measure this and correct for it. This aspect will

be considered for N and N molecular-ions in paper III.B of this series.2 2
The four items above stress the purely numerical and empirical nature of the

problem under consideration and introduce some nomenclature. The predominate influence,

so long as small, or minimal, expansion basis sets are employed, has been from chemical

or physical intuition, couched in terms of distorted, hybridized, or polarized atoms

in the molecule, and there is good reason to retain these ideas if possible. There is,

however, great difficulty in properly and uniquely assessing these intuitive aspects

when the basis set is large and for molecular orbitals which depart radically from the

distorted one-center problem, or atom, are involved. The problem, especially for the

outer molecular orbitals, becomes more properly one of a purely mathematical nature,

113



namely to best approximate the molecular orbitals with as few terms as possible. This

purely mathematical aspect has been largely and necessarily ignored in the past when

considering the expansion functions and really takes the form of curve fitting of a

most tedious kind. Physical intuition still can play a measured role and is certainly

desirable,and chemically significant interpretations can be won, but less so in terms

of the simple single expansion coefficients, Ci p . This is partially why the inter-

pretative and chemical aspects of this series of papers is reserved for homologous and

isoelectronic series of diatomic molecules where a direct approach in terms of mole-

cular orbital charge density contours is proposed.

Previous calculations of the kind considered in this series have also probed

the problem of choosing the basis set comporsition. These calculations include the

results of Richardson
3 3 for N2, Lefebvre-Brion, Moser, and Nesbet

4 7 for CO, Clementi
4 8

and Nesbet4 9 for HF, Manneback5 0 for Li2s Kahalas and Nesbet 51 for LiH, and more

recently the results of McLean5 2 for LiF, Yoshimine5 3 for BeO, Nesbet 34 for the 14

electron systems N2, CO, and BF, and finally the HCi results of Nesbet.
5 4 In general

these efforts, all for extended basis sets, seem to suffer from two defects. First,

practical considerations have usually forced the authors to restrict, often severely,

the size of the expansion basis set, the extent of optimization of orbital exponents,

and most importantly, to restrict exhaustive tests of the basic assumptions made in

support of the particular calculations. The second defect is associated with the fact

that these are, with one exception, studies of individual molecules and do not permit

the study of whole homologous and/or isoelectronic series. The present investigations

generously relax these restraints.

Mulliken5 5 has given an interesting discussion on criteria for the construc-

tion of good LCAO-MO-SCF wave functions, but the specific suggestions made were based

mostly on the results on HF by Clementi.4 8 In particular several specific warnings

47H. Lefebvre, C. Moser and R. K. Nesbet, J. Chem. Phys. 35, 1702 (1961).

48E. Clementi, J. Chem. Phys. 36, 33 (1962).

"R. K. Nesbet, J. Chem. Phys. 36, 1518 (1962).
50C. Manneback, Physica 29, 769 (1963).

513. L. Kahalas and R. K. Nesbet, J. Chem. Phys. 32, 529 (1963).
5 2 A. D. McLean, J. Chem. Phys. 39, 2653 (1963).

-3M. Yoshimine, J. Chem. Phys. 40, 2970 (1964).

54R. K. Nesbet, J. Chem. Phys. 41, 100 (1964).

55R. S. Mulliken, J. Chem. Phys. 36, 3428 (1962).
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given by Mulliken about "balanced" sets and other matters seem particularly relevant

only when small or marginal expansion basis sets are employed. This matter will be

reconsidered later.

Answers to the four groups of questions given cannot claim to be either

unique or complete and are "general" only within certain bounds. The remainder of this

section is devoted to describing the calculations on N2 as a start to answering these

questions.

Three different and relatively independent schemes were employed in synthesiz-

ing the expansion basis set for N2 (X lz+) at Re = 2.068 Bohr. The first scheme takes
g-

the perspective that the N2 wavefunction should be built up completely from scratch

and the relationship to the two N( 4S) atoms be gleaned directly. The second and third

scheme consider the N2 molecule to be formed by two distorted N( 4S) atoms separated by

Re, and the Hartree-Fock-Roothaan wavefunctions for the N( 4S) atom play a key role.

In these last two schemes the calculations of Bagus, Gilbert, Roothaan and Cohen 46 for

atoms are employed and the two differ in which atomic basis set is used as the starting

point.

A quick preview of the progress of two of these schemes to build up the expan-

sion basis set, expressed in terms of certain energy quantities, is given in Figs. 2,

3, 4, and 5, and in Tables I and II. In Table I, the total energy, kinetic and poten-

tial energy, virial, and orbital energies are documented for the first and second

schemes. The variation of these quantities as the basis set synthesis progresses for

both schemes is illustrated in Figs. 2 (total energy), 3 (orbital energies), 4(kinetic

energy), and 5 (potential energy). In these figures the lines connecting the points

do not correspond to any curve fitting, but merely serve to connect the points in

sequence. The following discussion will define these Tables and Figures completely.

The construction of basis set 1 started with the reproduction of Ransil's

Best-Minimal-Molecular-Orbitals (BMMO) set- , called set 1A here, with the Cp's of

Xpg 9and Xpu complements equal (g = u constraint). The general procedure was then to

add new STO symmetry orbitals one or two at a time and optimize certain combinations of

orbital exponents. The overall basic logic was simply to add Xp?, STO symmetry

orbitals of lowest permitted ip until no further improvement was evident and then add

Xp? with the next highest ip value. For example, in 6g symmetry, g ns and 6 np, and

6 ns' and 6 np' types were practically exhausted before starting to add gnd STO

symmetry orbitals. The next step, however, from the BMMO results of Ransil 2 9 (Set 1A)

was the relaxation of the g = u constraint which gave a small improvement. Set 1B was
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obtained from Set lA by double (i.e. simultaneous) optimizations of the C p's for each

of the 6 ls and 6 uls; 6 2s and 6u 2s; and 6 2p and 0u2p pairs. Then, in addition, cer-

tain other double optimizations were carried out of Cp's only in 6 or 6u symmetry and

several single optimizations which finally gave what may be termed the BMMO (g * u)

set. Sets 1C through 1G, represented by the first, and steepest drop, of the solid

curve in Fig. 2, correspond. to the gradual improvement to the "double zeta" approxi-

mation (Set 1G). At each intermediate point the Cp's of the new STO symmetry orbitals,

that is 6 ls' and 6ulS' (Set 1C), 6 2s' and 6u2s ' (Set 1D), nu2P
' (Set 1E), ag2pV

(Set 1F), or Gu2p' (Set 1G), respectively, were simultaneously optimized with the

original unprimed analog and a few other Cp'S, usually from those XpAa which are impor-

tant in the same symmetry, were single reoptimized. Thus when a second 6 2s was added,g

6 92s', the Cp'S of 6 2s and 6 2s' were doubly optimized and then the Cp s of 6glS and

6 ls' were singly reoptimized. An exhaustive and complete reoptimization of all p 's

was not carried out at each stage, however. Set 1G should be comparable with

Richardson's best double zeta calculation, 3 3 but actually the energy for Set 1G is

much lower than Richardson's result (i.e. -l08.8914 Hartree versus -108.785 Hartree).

Although Richardson's set did not have 6 lS' and 6 lS' STO symmetry orbitals, most of

the improvement through Set 1G is due to more thorough optimization of orbital expon-

ents. The first plateau of the solid curve in Fig. 2, corresponding to Set 1H through

Set 1K, represents the addition of new STO symmetry orbitals such as r u2p", 6 2p", and

6 3s, that is, additional XpXa of already existing kinds, differing only in different

Y'S or np values, but no new ip values. The new Cp'S were optimized in a similar

fashion as before, except now, with up to three Xpia Identical except for Cp'S, suc-

cessive double optimizations were employed (a few triple optimizations indicated that

well chosen consecutive double optimizations were as effective). This also increases

the lability towards degeneracy of the expansion basis set; so not only did this stage

contribute only slight improvement in the energy, it was difficult to keep the calcu-

lation in production.

The last major improvement in constructing basis set 1, shown by the second

and smaller drop of the solid curve in Fig. 2, was obtained by the introduction of a

new 2p value, namely the addition of 6g3d (Set 1L) and u3d (Set 1M) STO symmetry

orbitals. The Cp's of the new STO symmetry orbitals were singly optimized and there

was no exhaustive back optimizations to permit readjustment of the Cp's of the Xp a

already present. Basis sets 1N through 1R were formed by introducing 6u3d, 6 93d', and

itu3d' STO symmetry orbitals and also adding 6 94f and w u4f STO symmetry orbitals.
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Again the new functions were cither doubly optimized with analogous unprimed foris or

just single optimized. This last stage (IN through 1R) gives rise the oecond plateau

of the solid curve in Fig. 2 and here the next new 2p value, involving 2p p , shows

no significant drop off. Set 1R consists of 11 STO symmetry orbitals representing

(g molecular orbitals, 7 representing 0 u molecular orbitals, and 6 representing the

single l u molecular orbital, or in short this is a 11x7x6 set. This set (1R) gives

rise to 115 matrix elements thus leaving room for a few additional basis functions.

To test what additions might be useful, a few additional STO symmetry orbitals were

added to each symmetry type holding the other two fixed. These single SCF runs, called

"saturation" runs, tested the usefulness of adding 6g 4d, g5f, 693d" , u3P, u3d"

6u3S , 6u
3 P , u4f, and certain other STO symmetry orbitals. This series of single SOP

saturation runs suggested the addition of 6 9g3d" and 6u3s basis functions which yielded

set 1S, a 12x8x6 set, which concluded the buildup of basis set 1 and the first scheme

of synthesizing the basis set. The Cp's of these two new STO symmetry orbitals were

optimized either singly or together with analogous types already present as in the

preceding steps.

It may be profitable to make several points here before going on to the des-

cription of the second scheme of synthesizing the expansion basis set. In the first

place, and most important for assessment of the convergence towards the true Hartree-

Fock results, is the striking appearance of the solid curve in Fig. 2 which displays

the progressive improvement in the total energy (see Table II for energy differences).

Particularly encouraging is the fact that this curve seems to have leveled off and is

only very slightly affected (in the third or fourth decimal place) by adding more STO

symmetry functions of types already present or even new types of functions from the

remaining possibilities (STO symmetry functions with np 4 6 and Ip 4 3 permitted).

The leveling off follows two substantial drops in the energy improvement curve asso-

ciated with doubling the minimal basis set and the introduction of basis functions with

1p M 2, respectively.

The second point is that the total energy for basis set iS is -108.9888

Hartree compared to the experimental value of -109.586 Hartree. This difference,

about 16.244 e.v., reflects not only the improvement yet to be obtained to Hartree-

Pock limits, but the intrinsic shortcomings of the Hartree-Fock approximation. It

seems that the bulk of improvement must lie with the latter and only a rather small

amount remains to be gained within the Hartree-Pock approximation.
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To achieve a Hartree-Fock-Roothaan result which is an even closer approxima-

tion to the true Hartree-Fock result than the results of basis set IS, the remaining

source of improvement is most likely to be gained from either, i) continued and relent-

less optimization and reoptimization of Cp's, and substitution of one Xpa for another

(for example, replace a 6g2p function by a dg3 P function) within basis set IS, or,

ii) continued extension of the expansion basis set with the addition of more functions

of types already present or new types. This second possibility seems unlikely to be

too useful except perhaps in giving overwhelming conviction that convergence has

indeed been achieved. Remarks already made have indicated the likelihood that the

addition of many new functions will give only a small reward for much extra effort.

Besides, this second possibility is presently beyond the capability of the existing

computer program, which does not permit basis sets giving rise to more than 144 matrix

elements. Any small improvement which remains must then come from the pursuit of i),

that is by extensive reoptimizations of the p 's of set 1S. In building up set 1S,

the Cp's of the new Xp a were optimized either singly or in combination with the

Xp's of like symmetry and Ip already present. Therefore any improvement via i) must

come from the back optimizations and reoptimizations of the Cp's of the whole basis set

at each stage to permit the old Xp~a to readjust to the addition of the new Xp),. It

i likely that the bulk of this readjustment for STO symmetry orbitals of the same

symmetry but different Ip values is absorbed in the vector components, but perhaps

the small residue is only to be gained by following path i). For a large basis set,

optimization of the Cp's is very expensive, especially if double optimizations are

desired, so this problem was postponed until the second and third schemes were explored.

See Table III for the terminal wave function resulting from this first scheme (that

is, basis set iS).

The synthesis of the basis set in the second and third schemes was based on

the use of the Bagus, Gilbert, Roothaan, and Cohen results for the N( S) atom. 6  The

basic plan was to employ STO symmetry functions constructed from the atomic basis sets

and then to add Xpha, especially those with Sp = 2, which seem necessary from the

results of scheme one. The Bagus, Gilbert, Roothaan and Cohen results give several

Hartree-Fock-Roothaan wave functions for N(4S) which differ in the size of the basis

set, that is, in the number of 9 and 2 Slater-Type-Orbitals employed. These results

for the first row atoms are the fruit of a dedicated effort to obtain the best possi-

ble expansion set for several arbitrary levels of approximation. For each set exhaus-

tive optimisation, reoptinsation, and back optImIzation of the 'a was carried out.
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The depth of study of this effort is emphasized to point out the care that was devoted

to insuring that both inner and outer shell atomic orbitals were very close to the

true Hartree-Pock orbital results. Translated into practical terms, this means that

these sets are particularly valuable for these molecular calculations since the atomic

cores are accurately represented by as few terms as possible, thus permitting more

flexibility in the addition of new Xp~a. The second and third scheme to construct the

basis set for N2 differ only in the choice of which Hartree-Fock-Roothaan wave function

for N( 4S) was employed. Since the third scheme (really the second chronologically)

was abandoned when it became evident scheme two (really the third chronologically) was

superior, only the results of the second scheme are presented.

The two Hartree-Pock-Roothaan wave functions for N( 4S) which are of parti-

cular interest here are the "nominal" set and the "accurate" set of Bagus, Gilbert,

Roothaan and Cohen. 4 6 The basis set composition of the nominal set is; ls(C = 6.346),

Is"(I0.507), 2s(l.697), 3s(3.715); 2p(1.352), 2p'(2.555), and 2p"(5.573), which yields

-54.40080 Hartrees for the total energy. The accurate set has the basis set composi-

tion; ls(t = 6.037), ls'(l0.586), 2s(l.588), 2s'(2.539), 3s(7.334); 2p(l.222),

2p'(1. 890), 2p"(3.270), and 2p"' (7.677), and gives a total energy of -54.40093 Hartrees

for N( 4S). A number of single SCF runs were made for N2(X lz+) at Re = 2.068 Bohr to

explore the merits of using these atomic basis sets, either unchanged or mixed,

together with other Xpha involving 1p = 2 and 3 based on the results of the first

scheme. It was decided from these calculations, to employ as a starting set for the

second scheme a composite set of STO symmetry functions constructed by using the five

s-functions of the accurate set in 6 and u symmetry, the three p-functions from the

nominal set in 6 and 7u symmetry, the two p-functions from the marginal set in du,

and then 0 3d, 0 4f, ou3d, ru3d, and 7ru4f STO symmetry orbitals as recommended from

the build up of Set 1 but with independent pS.56 The actual starting basis set for

56This choice was also influenced by collateral calculations and suggestions by

various meabers of this group, especially those by Dr. J. B. Greenshields.
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the second scheme was therefore,

lS( = 6.037), 6 ls'(l0.586), 6 2s(l.588), 6 2s'(2.539), 6 3s(7.334),

6 2p(l.352), 6 92p'(2.555), 6 2p"(5.573), 0 3d(l.352), 0 3d'(2.555),

tg3d"(5.573), 6 9g4f(1.917); 6uls( 6 .037), 6uls'(l0.5 86 ), 6u2s(l.588),

6u2s'(2.539), 6u3s(7.334), du2p(l.4 97), 6u2p'(3 .247), 6u3d(l.917);

7u2P(l.352), 7u2p'(2.555), 7u p"(5.573), ru3d(l.497), u3d'(3.247),

and nu4f(1.917). This is Set 2B in Tables I and II, and Figs. 2,3,4,5.

Set 2A, which is obtained from set 2B by deleting all X.p, with 1p = 2 or 3,

is only a single SCF result with no "molecular" optimizations of the 's and is

included purely for comparative purposes. Set 2A is an 8xx3 size set which gives a

total energy for N 2 of -108.8967 Hartrees and may be compared with the gradual build

up set 1I, which is a 7x63 size set with total energy -108.8992 Hartrees. Set 1I is

the smallest set in the gradual build up scheme which gives a lower energy than set 2A

and lacks only 6 3s and 6u3s STO symmetry orbitals from being equivalent to set 2A

[except for the y's, of course). How can the smaller basis set, set 11 [7>6X3 in

size], give a better energy than the larger set, set 2A [8x7×3 in size]? The answer

Ys'S and certainly set 2A would give the better result if the Cp's were all optimized.

However, if set 2B, which also has no "molecular" optimization of the tp's, and is a

12x8x6 size set, is now compared with 1S, the result of extensive optimizations as

described before and also is a 12x8x6 size set, the surprising result is that the pro-

posed starting set of scheme two, set 2B, is already lower in energy than the laborous

result of scheme one, set 1S [the energy of set 2B is -108.9897 Hartree and the energy

of set 1S is -108.9888 Hartree, a difference of 1O.00091 Hartree]J In addition,

except for the Cp's, set lS and 2B are identical in basis set composition; thus the

small difference must be attributed entirely .o the Cp values. Two possible explana-

tions may be advanced to understand this paradox.

A first possible explanation suggests that this small energy difference

reflects the inadequacy in scheme one of the optimization of those Cp values for XPAQ

which significantly affect the 16 and I% molecular orbitals, these being very impor-

tant contributors to the total energy. Although there was considerable optimization

of the Yo's in scheme one, the procedure followed was certainly not comparable to the

exhaustive optimizations of Bagus, Gilbert, Roothaan and Cohen,4 6 for N(4S) and a

small improvement in the quality of the 1C (-lsN ) and lou(~ sN ) molecular orbitals

might account for this small deficiency of the gradual build up set IS. As may be

noted, the cg and elu values are lower for the starting set 2B than for the final
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set IS by small amounts and both are lower than the eIs value for N( 4S). Argument

based solely on this evidence is weak and unconvincing and in light of the comparison

of basis sets 1I and 2A cited earlier, this explanation is not the major reason why

the proposed starting set, set 2B, is better than the final set of the gradual build

up, set lS.

The second proposed explanation is that extensive optimizations of the Cp's

should be performed only after the basis set composition as a whole, that is the entire

set of np, Ap, and starting Cp's of the X for each symmetry, has been decided. This

explanation thus suggests that the gradual build up of basis set 1S failed to permit

sufficient readjustment of the entire set of Cp's at each stage. Therefore, through

basis set 1K, which is the last set in scheme one before STO symmetry orbitals with

Ap = 2 and 3 were added, a better result is obtained than from basis sets based on

unoptimized atomic sets only (and no 93d, ,u 3d STO symmetry orbitals) because the

optimizations through set 1K permit the important outer shell distortions due to mole-

cule formation but probably at the slight expense of representing the inner parts of

the molecular orbitals involving 6 92P, 6 u2p, and 7Tu2 p type STO symmetry orbitals (as

well as the 16 and 16u molecular orbitals). Then continuing to set 1S by addition of

Xp*a with Ap = 2 and 3 and only optimizing the newly added STO symmetry orbitals, the

6g62p, g2p', 6 2p", ru2 p, 7Tu2p', and iru2p" basis functions were trapped in a manner

which prevented their readjustment except through the linear expansion coefficients.

This readjustment of the p's of the Xp a with A = 0 and 1 would permit higher quality

representation of the inner parts of the molecular orbitals since the 6 3d and 7ru3d

types were now also available for representing the outer parts, or polarization, of

these molecular orbitals. Conversely, set 2B, which is an unoptimized atom set with

the addition of 5g3d, Cg4f, cu3d , Tu
3d , and 7u4f type STO symmetry orbitals, was able

to well represent the inner parts of the molecular orbitals by using atomic C p's and

obtain a substantially good representation of the outer parts from Xpawith p = 2

and 3 together with some flexibility in the XpN, with ip = 0 and 1. Set 2B thus was

large enough in size, and versatile enough in original composition, to slightly eclispe

set IS entirely through atomic Cp's and the vector components.

The second argument seems much more plausible and it was decided to start

scheme two with the full 12x8x6 size set (set 2B) and carry out the optimization of

the C p's with the whole set present.

Set 2C was obtained from set 2B by singly optimizing all p's in order of most

important vector components in any symmetry. The improvement in total energy from set
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2B to set 2C was from -108.9897 Hartree to -108.9926 Hartree with the major improve-

ments coming from the optimization of the Cp's for the 6 2s(AE = 0.00071),

6 2p(AE = 0.00018), 6 2s'(AE - 0.00009), 7Tu3d(AE = 0.00049), 6 4f(AE = 0.00027), and

Su4f(AE = 0.00078) STO symmetry orbitals. The relatively large energy improvements

from the nu3d, 6 4f, and Tu4f basis functions reflects more the starting choices of

the Cp's rather than the importance of these basis functions. The concluding set,

set 2D, was obtained by again singly optimizing all p 's from the preceding set, set

2C. The total improvement in the energy in going from set 2C to set 2D was rather

small (AE = 0.00025) with the largest improvement from a single optimization contribu-

ting only 0.00005 H. This indicated that further passes of single optimizations,

either in total or partially, would not be rewarding. The last feasible prospect

would be to perform various double optimizations and these were considered to be poten-

tially unproductive relative to the machine time involved. Thus set 2D is the final

result for scheme two and this wave function is given in Table IV.

The dashed line in Fig. 2 shows the energy values for basis sets 2A, 2B, 2C,

and 2D. This curve is less emphatic as a testimony of convergence except that it

indicates an energy limit in the close neighborhood of the limit of the curve from

the gradual build up scheme. That other schemes could be divised is not unlikely, but

it is doubtful that the energy result could be significantly lower than the results of

set 2D (actually the energy difference between basis sets 1S and 2D is not very large,

JAEI = 0.0040 Hartrees of 0.1088 ev.).

How have these results (and other minor excursions of calculations on N2 not

presented here) helped in suggesting answers to the questions posed at the beginning

of this section? For calculations on diatomic molecules it seems imperative to start

with atomic Hartree-Fock-Roothaan wavefunctions whose basis set are large enough to

adequately represent the atomic orbitals, but small enough to permit the addition of

new Xp7 u and if still possible leave room for further exploration. In addition to the

Xp', arising from the atomic results, it is essential to have at least one, and pre-

ferably two, YpNa STO symmetry orbitals with 1p = 2. Multiple Xp, differing only in

Cp, for example 692p, 6g2p', and eg2p", are necessary either from atom parentage or

possibly for addition functions (for example iTu3d and itu3d' in basis sets IS and 2D).

It is also clear that the "double-zeta" approximation33 leaves much to be desired since

this result would do no better than level off on the first and upper plateau of the

solid curve of Fig. 2. In addition, the expectation values for the 'double-zeta"

approximation are suspect as discussed in paper III. B. The requirements on the size

122



and composition of the basis set suggested by the preceding remarks can be satisfied

within the present restriction of the total number of matrix elements for all first

row homonuclear diatomics, but perhaps without crushing: conviction for 0.. and F,.

The optimization of orbital exponents is crucial for small basis sets but can

never alone absorb the deficiency due to a lack of expansion functions. The number

and secondly, the kind of STO symmetry orbitals are still the most important considera-

tions and the energy improvement to be gained by exponent optimization decreases

sharply as skill in picking a starting basis set composition improves. This has been

illustrated in this section for N,(X 1Z+). After the set of np and I for the X

representing each symmetry type is decided and a set of rp is chosen from either

atomic results, interpolation, extrapolation, or elsewhere, optimization of certain

orbital exponents seems obligatory. As emphasized before it seems essential to do

these optimizations with either the whole set present (which is preferable) or to

back optimize the Cp's very extensively as the basis set is built up. The calculations

reported here, and others to be reported, indicate that optimization of certain Cp'S

make no significant improvement. Recognition of these certain Cp's, or more properly

the <p~a' permits a curtailment of the optimization of the Cp's with confidence that

little or nothing is lost and this considerably reduces the computation time. Such

curtailment has been practiced in the present paper only for the potential curve
ofnt N2(X l+ n o h ~X g1 + 2 2+ 22+

pointsof Z) and for the N2X g A 21u, and B Zu) molecule-ions.

Although not exhaustively tested, triple optimizations seem to accomplish no

more than arranged combinations of double and/or single optimizations and are not recom-

mended. Carefully chosen combinations of single optimizations, or exhaustive and repeti-

tive single optimizations, seem to accomplish almost as much as a double optimization

involving the same two p. This is based only on a few test cases and probably depends

on the particular case and very importantly on the size of the basis set. The major

argument against extensive double and/or triple optimizations is the tremendous time

investment necessary for molecules. The general problem of the simultaneous optimiza-

tion of all orbital exponents is thus not definitively solved and this represents a

defect in the present efforts. It is our belief, however, that for large basis sets

series of single optimizations are as effective as such a general solution would be.

Before leaving the discussion of basis set composition and the C values, a

few remarks about the "split-zeta" method proposed by Huzinaga4
3 and Phillipson and

Mulliken 4 was promised. The Best-Minimal-Molecular-Orbital (BMMO g = u) sets of

Ransil2 9 restricted the p such that C . = , 6la' ca 2s c u2 .' and u2p u2p
g u g U
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and, of course, that equal numbers of X represent the 6 and Cu molecular orbitals.

The improvement to be gained by relaxing the r = C. restraint to give the BMMO(g * u)
8 u

results were indicated in going from set 1A (BMMO g = u) to set IB (BMMO g * u) on the

solid curve of Fig. ;1. That this is a significant improvement is not to be doubted

relative to the BMMO(g = u) result, but this degree of flexibility seems far less

important relative to extending the basis set and permitting 1g3d, lTu3d, and other

such XpAC. It is our present conclusion that the complete separation of, for example,

6g and Ou, basis function sets is most important only in permitting different numbers

of Xpa for the two symmetries due to having more 6g type molecular orbitals than 6u,

and due to the fact, as has been discovered, that fewer 
6U expansion functions are

necessary even when an equal number 6g and 6u molecular orbitals are present.
57  Any

exhaustive treatment should keep them separated but as the p's in Tables III and IV

show analogous rp's differ only slightly.

The question of measuring how closely our best results (basis set 2D) compares

with the true Hartree-Fock results is less easy to answer conclusively. This compari-

son refers to a point by point comparison of the final Hartree-Fock-Roothaan wave func-

tion and a comparison of certain expectation values and molecular properties. In the

paper by Bagus, Gilbert, Roothaan, and Cohen this question is considered at length

for first row atoms and the very favorable comparison of the Hartree-Fock-Roothaan

wave functions with the numerical Hartree-Fock wave functions is delivered with crush-

ing conviction. Lacking even one molecular Hartree-Fock wave function (from solving

Eq. 11-17 numerically) our discussion must be based almost entirely on observing the

convergence of the calculation. If all the functional parameters were exercised to

exhaustion with no further improvement, it would be a very strong indication of con-

vergence. In the results5 8 for Li (X lz+) this was more comfortably achieved, 'hat is,2 g

by virtue of having only two 
6 g molecular orbitals and one 6u molecular orbital, rela-

tively huge basis sets could be employed to go far beyond what is really needed. For

N 2 the situation is somewhat less favorable since the problem and preaent computer

program do not permit comfortable margins for such exploration. The problem is thus

to determine from a series of "improving" approximations how close the last result is

5 7 j. B. Greenshields, "The Electronic Structure of Diatomic Molecules. VII. Carbon

and Carbon Molecule Ions", to be submitted for publication in J. Chem. Phys.

58P. E. Cade, K. D. Sales, and A. C. Wahl, "The Electronic Structure of Diatomic

Molecules. IV. Li,,(X lz+) and +2+ 2H) Ions', to be submitted for publication
in J. Chem. Phys.
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from the unknown quantity sought. The quantity sought may be considered as any Hartree-

Fock computed value, such as the total energy, orbital energies, expectation values,

or molecular property, but especially the molecular orbitals and the molecular orbital

charge densities.

To therefore measure how certain molecular quantities do vary or "converge"

as the wave function assumes greater and greater flexibility, one may construct tables

of differences between results of the Nth and (N+l)th approximation for the various

quantities and examine the behavior as N increases. In Table II is presented

AE = EN+1 - EN, AT, AV, and the set of Aei for the basis set synthesis in both scheme

one and two. The differences in Table II arise from the results given in Table I.

Difference tables are given and discussed in paper III. B for various expectation

values and molecular properties. Figs. 2, 3, 4, and 5 also indicate the manner of

convergence for the total energy, orbital energies, kinetic energy, and potential

energy, respectively.

The AE increments of Table II show explicitly the relative saturation at the

various stages shown in the solid curve of Fig. 2 as the basis set progresses from set

1A to set 1S. Similarly the relative improvements in going from set 2A to set 2D

indicates that the true Hartree-Fock energy value has been obtained to at least two

decimal places and perhaps to three decimal places.

The other quantities considered here are not of course, bound to a predictable

course toward the Hartree-Fock result and their differences show this. Most disturb-

ing is the erratic behavior of the kinetic and potential energy values displayed in

the solid lines of Figs. 4 and 5. Thus while the total energy in the solid curve of

Fig. 2 is relatively well behaved and always descending, the differences in Table II

show that the gains in energy may be due chiefly to a decrease in the kinetic energy

(always positive) or an increase in the potential energy (always negative), or finally

a combined change of a subtle nature. The major feature of the AT and AV differences

is that they also gradually decrease in size. Though less convincing when compared to

the AE values, the AT and AV progressions indicate that the kinetic and potential

encrgy are also converging, but more slowly, to perhaps the true Hartree-Fock values.

Not much else can safely be stated. The dashed curves in Figs. 4 and 5 for the syn-

thesis of basis set 2D show a more reasonable behavior which suggests that the erratic

behavior of AT and AV in scneme one arises from the crude approximation of the molecular

orbitals in scheme one at the intermediate stages and the relative sensitivity of <T>

and <V> to these changes. A question of "internal balancing" of the representation of
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various molecular orbitals may also be responsible (see paper III. B ior a discussion).

The various cis shown in Fig. 3 and AEi's in Table II indicate that the ei's

are not greatly sensitive to improving the wave function, but also show an unsystematic

behavior (see Ae i values) at the intermediate points of scheme one. These A i also

exhibit decreasing values for all e columns as larger basis sets are obtained.

It should be emphasized thatthe erratic behavior in certain regions of the

solid curves of Figs. 4 and 5, which display the variation of the kinetic and potential

energy, respectively, should not be taken as condemnation of the convergence of scheme

one or cause alarm generally in this context. The gradual build up of the basis set

in scheme one was purposely constructed step at a time to more effectively measure the

defects of the various intermediate basis sets when viewed in the overall sequence of

the converging series. The last points of the solid curves, for example points, 1P,

1Q, 1R, and 1S, should certainly be given more weight than the points on the left hand

side of Figs. 4 and 5 because these sets are gradually larger and better able to make

up defects in basis set composition and exponent optimizations due to greater flexibi-

lity through the linear expansion coefficients. In this light the last several points

in the solid curve should perhaps be set at greater intervals and not strictly linear

as they are given. In such a perspective the erratic behavior of <T> and <V> would

still be present and condemn intermediate sets, but it would not mask as much the

apparent gradual convergence of these values.

It would be desirable to also construct a table of charge density differences

for each molecular orbital and for the total wavefunction, a quantity, for example,

such as D(tnO),

PN+l(,T) ,1.5

for an octant of the molecule. PN(9,1,1) is either a partial or total electron charge

density. As the sequence of Hartree-Pock-Roothaan wavefunctions approach the Hartree-

Foek wavefunction then D(Q,,O) - 0 all over the octant. This would, however, be only

a necessary and not sufficient condition. The resulting massive table, or the equiva-

lent, is not included in this paper.

The well known test could also be made to investigate the constancy of

E (,e) and/or En(t1qt) in the expressions

_ - e1((,T,0) , 111.6
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for closed shells, and

FO(k, m) n , 
1

qn

for open shells, over the range of (t,o¢) points in the unique octant. It is con-

templated that this test may be undertaken in the future for a few diatomic systems.

Certain additional manifestations of the convergence of the Hartree-Fock-

Roothaan wavefunctions to the Hartree-Fock wavefunctions is discussed in paper III. B

concerning certain expectation valses and a few molecular properties.

This discussion of convergence is the most satisfactory the authors though

could be presented with the calculations performed. It is especially unsatisfactory

from the viewpoint of numerical analysis, in which a more meaningful discussion would

consider the best approximation in terms of the measure MN(9iu),

N

MN(9ia) = Min P a - Z Xpku Cjlp II • 111.8
Ci'Xp p

and then study MN(9ia) as N increases to its present limitations (that is if 9ia was

known). Eq. 111.8 defines the measure, M, of the best approximation of the molecular

orbital (ia to Nth degree, MN('iau), as equal to the norm of the quantity

N
Pi~a -pXp7au C I~p ' II.9

p

minimized with respect to the expansion coefficients. A detailed discussion of an

analysis of this sort and its ramifications as regards expectation values and mole-

cular properties would be very interesting and useful.

It is to be noted that the general conclusions drawn here closely parallel

those discussed by Huo2 for the calculations on CO and BF. In assessing the relative

approach to the true Hartree-Fock results for the N2 calculation compared to the cal-

culations on CO and BF, one must remember that relatively huge sets are employed for

N2 compared to CO and BF. This arises since symmetry expansion orbitals are employed

for homonuclear diatomic molecules. Therefore, the 12 cgo 8 cu, and 6 ru basis set for

N2 really corresponds, in terms of the heteronuclear problem, to 20 6-type functions

and 6 7t-type STO's on each nitrogen nucleus, while the largest set employed by Huo
2

has 8 0-type STO's on 0, 8 6-type STO's on C, 4 w-type STO's on 0, and 4 i-type STO's

on C for CO. The employment of symmetry expansion functions is thus a tremendous
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practical advantage.

Certain of the conclusions presented here are also well known from the works

of Nesbet 3 4 (who first draws attention to the necessity of introducing d-type orbitals),

McLean5 2 (who also stresses the importance of optimizing orbital exponents with the

entire basis set present), and others.

In closing Sec. III-B, it may be useful to pinpoint the deficiencies of the

preceding results as viewed by the authors. The major shortcomings are:

lst) It would be very desirable to be able to add even more basis functions

to clinch our view that convergence is achieved. The present computer program for

homonuclear diatomic molecules just does not permit a comfortable margin beyond what

we believe is really needed to obtain Hartree-Fock results for N2 .

2nd) Simultaneous optimization of all orbital exponents would be desirable.

At our present level, it would be desirable to be able to do exhaustive double and

triple optimizations, but the expense seems unjustified.

3rd) It would be interesting to be able to add Xpa with Ip > 3 to confirm

our belief that, at least for first row diatomic molecules in their ground states, STO

symmetry orbitals beyond 6 g4f, 6 if, u4f, and 7T 4f are unnecessary.

4th) It is not now feasible, or in light of the lst) defect mentioned, perhaps

even necessary, to painstakingly attempt to weed out the one or two functions, if

indeed there are any functions, not really needed as Bagus, Gilbert, Roothaan and

Cohen have done for the first row atoms. This defect is most objectionable if these

sets are to be used as the starting point for perturbation calculations, such as

involved in obtaining the electric polarizability or magnetic susceptibility of dia-

tomic molecules.

C. Final Hartree-Fock-Roothaan Wave Functions For N,(X l2+) and

.+, 2_ + A H Ions.

The concluding wave functions from the synthesis of the expansion basis set

using scheme one (Set 1S) and scheme two (Set 2D) are given in Table III and IV,

respectively. The total energy, kinetic and potential energy, virial, and the orbital

energies for these wave functions are given in the appropriate rows of Table I and are

repeated here for completeness. Basis set 2D will be considered the final result at

R (Exptl.) and is taken as the Hartree-Fock wave function for N,(X lZ+) when a single
e g

definite choice is required, or unless it is otherwise stated.
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The wave function for N2(X 1 Z), set 2D, was now used for the starting basis

set composition to obtain the Hartree-Fock-Roothaan wave functions for the following

singly ionized states of N2:

N g u  X g ,

N (16g 21 2,0 2_ 2 1T 36 2g), A 2Hu ,

2 g u- g - U g 9u

N (Ig21d22 g22 ulru43 g2), 2 +N+(c 62 61r3 B Zu

The order of the molecular orbitals and the state specifications are in accordance

4 +with experimental assignments. These three states of N. participate in two well-

known band systems of N+, that is,
5

B 2Z+ _ X 2Z+ (First Negative System),

u g

and

A2 1I - 2 + (Meinel System).
u2 g

It should be emphasized that these calculations on the N (X 27+, A 2 B Z) ions

are direct calculations for the open shell system resulting from the removal of one
electron from a 30 , lr u , or 2du molecular orbital, respectively, and are not simply

taken from the N2 (X Z+) results. Accordingly, full rearrangement of the molecular

orbitals (and therefore full rearrangement within the Hartree-Fock approximation) is
+

achieved for the N ions resulting from the ionization processes:

N 2(... 21 43( 2, 1Z M+) N2( 26g 2 , A 2Iu) + e-

2 4 2+ u *
N+(...26u2 lTu430g X Zg) + e-

Thus we have obtained Hartree-Fock-Roothaan wave functions for these three states of

N+ which are also to be employed in subsequent research on the reorganization of the

electronic charge distribution of nitrogen upon ionization, and for calculating the

transition moments for the First Negative and Meinel systems of N2 .

It seemed reasonable that the final N2 (X lZ+) wave function should provide

the starting expansion basis set for each of these three states of

2+N+(X 2Z+- A 2Hu B 2z+). This choice was far more practical than starting anew for
2 g' u

each of these states of N2and is not unreasonable on simple physical arguments. The

reorganization of the charge distribution, and hence modification of tae molecular
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orbitals, for these various states was thus rffected through the linear expansion coef-

ficients and reoptimization of certain C values as is discussed below. In the case~p
of the N (X 2Z), however, a parallel study was also made which makes use of the

Hartree-Fock-Roothaan wavefunctions for the N+( 3P) atomic ion.

Let us consider first the calculations on the N+(B 2,) molecular-ion, The

basis set composition of N2 , set 2D (Table IV), provided the starting set using

R = Re(Exptl.) = 2.0315 Bohr. This Hartree-Fock-Roothaan wave function gave an energy

of -108.2533 Hartrees before any reoptimizations of the orbital exponents. The C

values for all eight Xpa of 6u symmetry were singly reoptimized, including those

which contribute mainly to the 16u molecular orbital (that is duls, OulS ' , and 6u3S

STO symmetry orbitals). The total improvement in the energy after these eight single

optimizations was 0.00163 Hartrees (E = -108.2549 Hartrees), with 0.00148 of the

improvement coming from the slight expansion of the 6 u2 s' STO symmetry function and

0.00010 improvement coming from the reoptimization of C6 3d" Clearly then, theu

reoptimization of most of the C p for u symmetry was fruitless and apparently the bulk

of the reorganization to this point is effected by the linear expansion coefficients

and the slight expansion of the first 6 u STO symmetry function optimized (6u 2s'). The

next step was to singly reoptimize the Cp's for nine of the twelve 6 STO symmetry

functions (neglecting only the 6 ls, 6 ls', and 6 4f functions). This step gave an

additional energy lowering of 0.00108 Hartrees (E = -108.2560 Hartrees) with the only

large contributions arising from two contracting 6g STO symmetry functions, that is,

0.00077 Hartree lowering from 6 2s optimization (the first 6 function optimized) as

cc 2s increases from 1.45349 to 1.61093, and 0.00023 Hartree lowering from 
6 g2p

(C(g2p goes from 1.28261to 1.39078). The attempted optimization of the C p for the

other seven 6 STO symmetry functions clearly gave very little improvement.

The last set of reoptimizations of the non-linear parameters (Cp's) for the

N4(B 2Z+) wave function involved 7r STO symmetry functions. All six Cp's for the wu

basis functions were singly reoptimized, lowering the energy to E - -108.2596 Hartrees

(a further improvement of 0.00354 Hartree). In fact, the largest improvement of all

(that is, from any symmetry) came from optimizing the energy with respect to Cu2p'

which also contracted (C u2p went from 1.38436 to 1.53707) and alone gave a lowering

of 0.00352 Hartree. This last result provided what was taken as the Hartree-Fock wave

function for N+(B 2Z), which is given in Table VII. The most surprising fact in this

sequence of reoptimisations was that any rearrangement of the molecular orbitals not

accomplished by the linear expansion coefficients, CWp, seems to come chiefly from
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the contraction of the 7u2 p, tg2 s, and 692p STO symmetry functions. This is surprising

since it is an electron from the 26 u molecular nvbital which is removed to form the

N+(B 2 7,) ion. The total energy decreased from -108.2533 Hartrees to -108.2596

Hartrees (which gives AE = 0.0063) as a result of these three sequences of single

optimizations. A few additional further calculations were also made for N+(B 2 z+)

and these are discussed a little later.

It is known from experimental data that the B 2u state of N2 is several elec-

tron volts above the A 2 u and X 27,+ states, whereas these latter two states have

potential curves which are relatively close together over a range of internuclear

separations. The calculations of the Hartree-Fock-Roothaan wave functions and energies

for the N+(X 27,, A 2f u ) states closely paralleled the calculations for the B u2 g' u stte
state. The basis set composition used as the starting point was again set 2D for

N2 (X 
1 X+) and in both cases three sequences of selected single reoptimizations of Cp's

were carried out; one sequence for each symmetry type occupied.

The starting basis set (Table IV) gave an energy of -108.4208 Hartrees for

N+(A 211u) at R = 2.222 Bohr (the experimental Re value). This energy value decreased

to -108.4239 Hartrees (AE = 0.0031 Hartree) after all six Cp's of the 7ru STO symmetry

orbitals were single optimized. Only the first optimization, however, was effective,

namely that for C u2p. This single optimization alone gave a lowering of AE = 0.00308

Hartree as the basis function contracted and C u2P increased from 1.38436 to 1.54195.

The total energy was next optimized in sequence, or singly, with respect to the Cp'S
for seven of the twelve STO symmetry functions, XpXm, of 5g symmetry. Three of these

optimizations on 6 functions were significant; 6 2s, which contracted as C. 2s went

from 1.45349 to 1.62293, gave an AE - 0.00080 Hartree, 692P gave an AE - 0.00g048

Hartree and also contracted (C( 2p went from 1.28261 to 1.42818), and 6 93d which gave

an improvement of only 0.00015 Hartree as it's orbital exponent also increased. The

total energy for N+(A 2nu) after these seven single optimizations was -108.4254

Hartrees (AS - 0.0015 Hartree for the a sequence). The last sequence of optIln3atlons

of orbital exponents involved only Xp? of 6u symmetry. Thus the Cp'S for the 6u2s

and 6u2s' expansion functions were simultaneously optimized and the Cp of 6u2p, 6u2p',

and 6u3d STO symmetry orbitals were each singly optimized. The double optimization of

Ou2S and 6u2s' Cp values gave an energy lowering of 0.00149 Hartree, which was the

entire improvement from this sequence of optimizations. The total energy, at the con-
clusion of all three sequences of optimization of orbital exponents for N(A 2 u ) at

R - Re(EXptl.) - 2.222 Bohr, was R - -108.4270 Hartrees (the total 69 - 0.0062 Hartree)
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and this result and wave function was taken as the final result (Table VI). Several

further calculations were, however, made and these are discussed subsequently.

Two separate calculations were made for the N+(X 2Z+) molecular ion. Both

were made with R = Re(Exptl.) = 2.113 Bohr and the two efforts differed only in the

source of the C values employed in the starting set, although their composition wasp

otherwise identical, that is the usual 12x8x6 basis set. The first set of calculations

started with the basis set composition of N2 (X 1Z+), Set 2D in Table IV, while theg
second set, to be discussed later, started anew with Cp values obtained from an atomic

Hartree-Fock-Roothaan wave function for N+( 3 P). Starting with the basis set composi-

tion from Table IV, an energy of -108.39T4 Hartrees was obtained for N+(X 2X+), the
2 g

ground state of N2 . It may be noted already that some thing is amiss, as the starting

energy value for the N+(A 2 u11) ion was lower. This had also been noted earlier from
the fact that JE36g > IEl u for the results of basis set 2D for N2 and for each set

in the gradual build up scheme.

Three sequences of reoptimizations of orbital exponents were again performed.

Eight of the twelve Cp's of 6 STO symmetry functions were singly optimized (omitting

the-functions dgls, 6gls', 6 g3s, and 6g3d", all having large Cp values) giving a total

energy improvement of AE = 0.00120 Hartree (E = -108.3986 Hartrees). This improvement

came chiefly from only two of the single optimizations; the optimization of the energy
with respect to C0g2s gave a gain of 0.00068 Hartree as C6g2s increased from 1.45349

to 1.67662, and the optimal value of C.g2p gave an energy lowering of 0.00038 as C.g2p

increased from 1.28261 to 1.47252. The next sequence of reoptimizations involved all

six u STO symmetry functions. Thus Cp values for the 7u2p, 7ru2p', 7r 2p" , and Tu4f

STO symmetry functions were adjusted by single optimizations of the energy, and the

t 's from the 7 3d and 7T 3d' STO symmetry functions were simultaneously optimized.
'P u u

The total energy was lowered to -108.4023 Hartrees (AE = 0.00364 Hartree), and 0.00362

Hartree improvement of this came from the contraction of the ru2p basis function

(Cu increased from 1.38436 to 1.53784). Finally, optimal values of five to eight

STO symmetry functions of Gu symmetry were obtained. Of these five single optimizations,

only that involving 6u2S' was significant. The-total energy was thus lowered to

+-108.4037 Hartree. The concluding wave function for the ground state of N2, the

7, g state, at Re(Fxptl.) = 2.113 Bohr is given in Table V. Thus it appears that the

A u and X 2g states of lN. are reversed in order. Several subsequent calculations on

the X Z+ state were also carried out and are discussed below. The total energy improve-

nent after these three sequences of reoptimizations Is AE - 0.0063 Hartree.
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A few general remarks about the Hartree-Fock-Roothaan wave functions displayed

in Table III through VII, about certain trends in the optimization of the non-linear

parameters, and about the quality of the results for the N+(X 
2 X, A 2H , B Zu ) mole-2 9 u u

cular ions may be useful at this point. As a preliminary, however, it seems advisable

to emphasize that caution should be exercised in considering discussion of the Cix p

and Cp values, and in general no great significance should be placed on discussions

which attempt to relate these quantities to the physical properties of the electronic

system. The viewpoint taken here is conservative in this regard and is primarily con-

cerned with the CiAp and C p values in a purely numerical approximation perspective.

It is usually impossible to objectively, or uniquely, untangle the relative merits of

the linear (CX p ) and non-linear (C p) degrees of freedom in the representation of a

given molecular orbital. This perspective underlies the following remarks.

When the wave functions for N2 (X 1Z+) in Table III (Set lS from the gradualg-

basis set synthesis) and Table IV (Set 2D from using HFR wave functions for N in S

state) are compared, one major quantitative difference may be observed. Although the

basis set compositions are equivalent, that is, each has the same number and kind of

Xp., except for the C p values, in each symmetry, basis set 2D is always better distri-

buted among the important XpAa for each molecular orbital, " For example, in Set

iS, C20g 0g 2s - 0.01437 and C2 6  0g 2s' = 0.72687, but for set 2D, C2 6 g 2S = 14106

and C26, 0 g2S = 0.59948. This better balance among expansion functions for set 2D

relative to set lS is observed again for the 20g vector components involving Og
2p and

0 2p' STO symmetry orbitals and in the 3
6g, 2 0 u , and lru vector components. This is

suggestive that the small improvement of set 2D over set 1S might be due to making

better us. of the several important Xpxa and thus implies that set 2D is perhaps a

better representation of the various molecular orbitals on grounds other than only

yielding a lower energy value. That set IS could not spread the contributions from

the important Xpa more evenly is due to insufficient back reoptimizations of the Cp

values as suggested earlier.

Before noting the changes in the Hartree-Fock-Roothaan wave functions in

going from N2 (X 1X+) to N+(X 2Z + A 2 Hu, B 27,), the major features of the sequences
g 2 g'. u'

of reoptimizations of the C, for the N+ ions is now summarized. The three sequences

of reoptimizations, for g, 6u, and lru symmetry, gave identical total improvements of

AE = 0.0063 Hartree for each the X 2,z+, A 2 B states. Thus, the reorganization

effected by reoptimization of the C values was apparently insensitive to the state
p

involved, although the details differ somewhat. The second major feature was that for
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each state the total gain from reoptimizing the orbital exponents came from the

5g2 s, 92P, 6u2 s', and ru2p STO symmetry orbitals only. These basis functions are

among the most important contributors to the 2 6 g, 36g, 26u , and lvu molecular orbitals

and they were usually (except for 6 2p) the first STO symmetry function of that sym-

metry optimized. Thus, there was apparently little connection between the symmetry of

the molecular orbital which lost the electron and the symmetry of the Xpwa which made

the largest improvement upon reoptimization of the Cp values. In as much as Cp reop-

timizations are able to reflect the reorganization of the T..., spatial readjustment

is relatively symmetry-independent. These observations are incorporated in future

calculations on A+ molecular ions.22

Consider now the wave functions for the N(X 2g,+ A 2 Ilu, B Xu molecular-ions

and recall the procedure employed to obtain these results, all starting from basis set

2D for N2 (X 1 X). It is our belief that results close to Hartree-Fock have been
2 9 +obtained for these states of 2 at their respective Re (Exptl.) values. This argument

lacks the alleged thoroughness of the argument for N2(X 1z+), except indirectly, and

suggests in particular two questions; 1st) Should the calculations for these ions have

started with HFR wave functions for N(4 S) and N+(3P) atoms and paralleled exactly the

N2 calculations instead of starting with the HFR wave function for N2? 2nd) Was suf-

ficient and/or judicious reoptimization of the C p values performed? The problem of
the basis set composition, that is the number of Xpa and kind with respect to np and

Ip values, but not C p values, is considered to be analogous with that for N2 as dis-

cussed in section III-C.

In regard to this first question, it may have been desirable to completely

parallel the N2 (X 17+) calculations for each ion, but the computation time for each

ion would have increased very considerably. By starting with the N2 (X 
1 E9) wave func-

tion, the major features are already present, and presumably the loss of a 36g, ltu,

or 26u electron from N2 is a less drastic change, than that resulting from the forma-

tion N+ from an N(4S) atom and an N+( 3P) ion. However, it was decided to make a com-

pletely alternative calculation for the X 2Z+ state using results from N+(
3 P) calcula-

tions. This was motivated by the observation that the X 27,+ and A 2 Hu states are

reversed relative to experiment and the desire to remove any doubts that this result

is indeed a Hartree-Fock result and not a shortcoming of the Hartree-Fock-Roothaan

results themselves. A Hartree-Pock-Roothaan wave function for the N+(SP) was thus

obtained of a quality comparable to the results of Bagus, Gilbert, Roothaan and Cohen 6

This resu't for N+(3p) gave an energy of -53.88799 Hartrees and had the basis set
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composition ls(C = 5.8503}, ls'(i0.3582), 2s(l.8480), 2s'(2.6759), 3s(7.0804);

2p(l. 68 80), 2p'(2.9459), and 2p"(6.7416). Several single SCF runs were made for

N4(X 2Z+) using basis sets constructed from N+(3P) and a 12x8X6 basis set was finally

chosen which took the Cp values for Xp7 with Xp = 0,1 as the average of the p 's for

N(4S) and N+(3P) results. The Xpla with 1p = 2,3 were taken from Table V, the pre-pre

vious calculation for N+(X 2Z+). Three sequences of single optimizations were then

carried out in the manner described before. The starting energy was -108.4009 Hartrees

and at the conclusion of the three sequences of single optimizations the energy had

been lowered to -108.4031 Hartrees, that is, AE = 0.0022 Hartree. Thus, although the

starting energy is lower than the initial result using set 2D, the improvement after

twenty-two single optimizations did not give an energy as low as that starting from

set 2D (in Table V). The pattern of which*Xpa made the largest improvements as the

Cp were optimized was roughly the same, except 692s and Ou2s or du2s' gave only very

small contributions. Thus the result, using tp values from N(4S) and N+(3P) wave func-

tions, is 0.0006 Hartree above the previous result. This investigation was certainly

not equivalent to the more exhaustive effort for N2 (X 'Z+) but it does indicate that
2 9 +

the procedure of using the N2 set 2D as the starting set for the N2 ions is probably

satisfactory when gauged only in terms of the total energy.

In regard to the question about the sufficiency of the optimization of the Cp

values, several supplementary double optimizations were carried out with negative

results. The fact that only a few of the Cp reoptimizations were effective reinforces

our contention that the CiNp have absorbed the bulk of the reorganization of the mole-

cular orbitals.

The inspection of the wave functions in Tables V, VI, and VII reveals the

single distrubing feature, namely the change in the vector components of the 20u mole-

cular orbital. Thus in basis set 2D for N2 (X lz+) it is observed that Cu -0.36437

a 2 6 0 2 s, - 0.54702, but for N2(B Z ), the worse case, these two vector components

are -O.40083 and 1.13692, respectively (but of course with newly optimized Cp values

for 6u2s and 6u2s' STO symmetry functions). This can be rationalized several ways,

but disproportionate vector components sometimes indicate unsatisfactory behavior in a

basis set composition and arguments given earlier would indicate that the representa-

tion of the 20u molecular orbital is less good with such an unbalanced distribution

(see particularly the 2 0u coefficients in Tables V and VI). No such behavior was noted

for the 26 , 3 , or lwnolecular orbitals of the N+ molecular-ions. This problem was

investigated since it may indicate the N+ basis sets are deficient in 0u symmetry and
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hence further, substantial improvement might be possible. For all three ions a number

of double optimizations involving Su 2 s and 6u2s' STO symmetry functions were carried

out to improve the distribution between these two functions. Every attempt, however,

which gave a better distribution did so at the expense of the total energy, and con-

versely when the double optimizations were followed step at a time, it was observed

that as the energy lowered the distribution between u 2s and u 2s' became worse and

worse. The possibility of degeneracy or near-degeneracy was also investigated using

6 u3s' and other functions with negative results. We have been forced to conclude that

this unequal distribution is indicative of no difficulties. A similar, but less empha-

tic, shift in vector components was noted also in going from N( 4S) to N+( 3 P) for atoms.

Therefore with slight trepidation, we repeat our conviction that these results
+

for N2 are very near the Hartree-Fock values. This is an important point since the

results for N+(X 2Z+) and N+(A 2llu) are reversed relative to experiment at their

respective Re(Exptl.) values. If this reversal persists as E(R) is obtained for these

ions, if one is convinced that the error between these results and the true Hartree-

Fock values is too small to explain the discrepancy, then this reversal must be due to

a differential shortcoming of the Hartree-Fock approximation for these two states,
2u 2 + +

A and X Mg, of N . This indeed is the conclusion of this research as is dis-

cussed fully in a later section.

In the course of the calculations to obtain the final wave functions of

N+(X 2Y,, A 2Hup B 2Z+) several recurrent features were noted which are clearly2 g'9 u u
associated with the readjustment of the molecular orbitals, or to be more precise, are

associated with the rearrangement of the electronic charge distribution. Since each

calculation was made for Re(Exptl.) of the particular ion in question, these observa-

tions are superimposed on the relatively smaller and non-specific changes in the 9...

over this small range of R values. As section III-D will show, these changes are

negligible in comparison. As expected, the major change, expressed in C AP and Cp

values, was that the and the total wave function in general, contracted. Thus

one can notice that relative to the N2 wave function, the C of the N+ ions in 20

35g, 26u , and lWu molecular orbitals are shifted to favor the Xpu with larger Cp
value for the important vector components. As noted also in the discussion of the

optimization of the Cp's for each state of N2, the Cp values usually increased also,

shrinking the orbitals. This discussion in terms of Ciwp and C values is obviously

awkward and in this series of papers we seek to examine these questions more directly.
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In a companion contribution, Wahl and Cade59 consider the reorganization of the elec-2 +
tronic charge distribution as N2 is ionized to form the three N+(X 

22+ A 2lu, B Xu)
u 2z'

molecular-ions. This study extensively employs charge density contours directly.

Calculations have also been made for several states of N+2  +a

molecular-ions. These results are, however, unoptimized Hartree-Fock-Roothaan results

using set 2D and no attempt is made to modify and improve the basis set composition.

In Table VIII the energy values for these calculations are presented with no claim

that these results are very close to the Hartree-Fock values.

D. Calculation of Potential Curves for N(X Iz_) and

N(X 2 +. A 21, B 2  ) Molecular-Ions.

It is well known that the regular Hartree-Fock wave functions for molecules

go over into usually a mixture of ground and/or excited state wave functions for the

separated constituent parts (e.g. atoms or ions for diatomic molecules) as the inter-

nuclear distance(s) become very large. The exceptions are cases in which the separated

constituent parts are themselves closed shell systems or one separated part is a bare

nucleus. This behavior is well illustrated for HeH+(lZ+) and NeH+(lZ+) by the calcula-

tions of Peyerimhoff. Thus with relatively few exceptions, potential curves for dia-

tomic molecules are expected to be rather poorly represented by the usual Hartree-Fock

results when viewed over the whole range of internuclear separations. Especially,

however, the calculated potential curve, EHV(R), depreciates rapidly at intermediate

to large R values as E,,(R) rises very steeply and often exceeds even the dissociation

limit at intermediate R values (e.g. two or three times Re). For R values less than

R e(Exptl.) and for perhaps a restricted range of R values on both sides of R e(Exptl.),

EHV(R) might be expected to be more successful in representing at least the shape of

the true potential curve (that is, a potential curve constructed from a Rydberg-Klein-

5 9A. C. Wahi and P. E. Cads, -The Reorganixation of the Electronie Chaine Diatrlbution

in the (Nitrogen Molecule-Nitrogen Molecular-Ion) System', to be submitted for

publication in J. Chem. Phys.

60S. Peyerimhoff, "Hartre-Fock-Roothaan Wave Functions, Potential Curves, and Charge

Density Contours for HeH+(X 'S+) and Nefi+(X 1Z+) Molecular Ions", submitted for

publication in J. Chem. Phys.
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Rees analysis6 1 of experimental results for the molecule and state in question) although

E%(R) calculated is elevated substantially by virtue of the intrinic shortcomings of

the Hartree-Fock approximation.

If consideration is limited to R values in a narrow range around Re(Exptl.),

the quality of the representation of the shape of the true potential curve is measured

by

A(R) - ERKR(R) - Ep(R) f [Y - HF] H [ - TH!]dV + 2 f [Y- YHF ] H YHFdV , II.10

where Y is the exact wave function and the true potential curve is taken as that

obtained from an RKR analysis, i.e. obtained by employing the turning points, Rmin

and Rax' and the height of each vibrational state known. If A(R) is constant, or

slowly varying, over the range of R values considered, then the Hartree-Fock potential

curve, E%(R), will be a good approximation to the shape of the RKR potential curve,

ERKR(R). The crux of the matter thus clearly depends on the differential shortcomings

of the Hartree-Fock results as a function of R, or more conventionally stated, it

depends on the variation of the "correlation" energy with R. It is, of course, true

that for each R value within the narrow range around Re that E%,(R) is correct to

second order, but this knowledge offers no security that A(R) is slowly varying or

constant, it merely means that second and higher order corrections are more important

for some R values than for others, presumably in a systematic manner. The authors

know of no general predictions as to the quantitative behavior of A(R) over a

restricted range of R values. For H2(X 1 Z+) and He2+(
1Z), Kolos and Roothaan62 have

given curves for the variation of the correlation energy over a range of R values

around Re .

These few preliminary remarks are intended to support the value of calculations

now to be presented for potential curves for N, ,) and N+( ., A 2H , B

molecular-ions. The Re(HP) value may be slightly displaced and the EH(R) curve may

be arcuated or flattened relative to EM(R), but as mentioned earlier, 8.(R) may be

an accurate representation of the shwe of the true potential curve. hus one objec-

tive is to obtain a quantitative measure of the accuracy of the shape of EH(R)

61See J. T. Vanderslice, E. A. Mason, W. G. Maisch, and E. Lippincott, J. Mol. Spec.

2, 17 (1959); 1, 83 (1960). Also F. R. Gilmore, unpublished researches. Rydberg-

Klein-Rees abbreviated RKR henceforth, although Gilmore's results do not include

Rees' quadratic procedure.
62. Kolos and C. C. a. Roothaan, Rev. Modern Phys. 22, p. 231, Pig. 6 (1960).
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over a small range of R values around Re (Exptl.). This evaluation of the quality of

the shape of the potential energy curve might just as well be considered in terms of

vibrational states (via the Rmin and Rmax or turning points from an RKR analysis).

This then exposes a second objective, namely to give expectation values and molecular

properties for specific vibrational states (for example for v 5) and therefore

quantities more readily comparable to experimental results. Thus a careful considera-

tion of the shape of EHr(R) between Rmin(v) and Rmax (v) will give some idea of the

quality of the molecular property calculated for the vibrational state v. The final

objective was to obtain spectroscopic constants ly several independent means and con-

sider the relative merits of the different methods.

The preceding discussion is applicable only for the Hartree-Pock potential

curve, so that before considering the results obtained argument is necessary to explain

how the calculated potential curve was obtained and to support our belief that this

curve is a very close approximation to E%(R). A related matter also considered, and

seldom critically studied, is the practical problem of discovering what extent of opti-

mization of orbital exponents as a function of internuclear distance is necessary.

Tables IX through: XIII give the final wave functions and energy quantities

for N2(X 
1Z) at five R values, that is, for R = 1.85 B., 1.95 B., 2.05 B., 2.15 B.,

and 2.45 B. For these particular R values, as well as for R = 1.65 B. and 2.90 B.,

which are not presented, c~nsiderable reoptimization of orbital exponents was carried

out. Other results for N2 '+) were obtained using interpolated C values and a

number of parallel calculations (but without optimizing C p values) were made for

N (X XZg, A 2 u , B 2) molecular-ions. In the calculations by Nesbet on nitrogen,
five R values were chosen which are roots of an appropriately scaled fifth-order

Chebyshev polynomial.6 3 This permits rather excellent interpolated values of E(R) and

is a commendable method for getting flexibility in the range of E(R) values. We have,

alternatively, obtained results for the eight R values indicated above to permit free-

dom in selection of the R values and also to obtain C p(R) curves which afford full

flexibility to calculate the wavefunctions and subsequently expectation values for any

R value. The details of the calculations for N2 (X 1Z+) will now be briefly considered.

63A. F. Tidman, Theory of APProxLmation of Functions of a Real VariablA , (The

MacMillan Company, New York, 1963), Chap. II.
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The development of EHF(R) and the wave functions in Tables IX through XIII

for N (X IZ+) were the results of a rather lengthy series of calculations.64 Two

R values (R = 1.85 Bohr and 2.15 Bohr), one on either side of R e(Exptl.) and substanti-

ally away from the calculated minimum, were chosen as starting points to obtain %.(R).

The calculations began with basis set 2D (Table IV) and all Cp values except those for

6 ls', 6uls', and iu 2p", which have relatively large Cp values, were individually

reoptimized for these two R values. For R = 1.85 Bohr, basis set 2D gave an energy of

-108.9629 Hartrees before any optimization, and after the twenty-three single reopti-

mizations, this value was decreased only slightly to -108.9635 Hartrees. Most of

these optimizations gave no substantial energy lowering and only the Cp for uip and

65 4f STO symmetry orbitals give AE increments greater than 0.0001 Hartree. For

R - 2.15 Bohr, basis set 2D gave a starting energy of -108.9798 Hartrees and after the

same twenty-three single Cp optimizations the energy was -108.9799 Hartrees. Using

these results for R = 1.85 Bohr and 2.15 Bohr, as well as the result for R = Re(Exptl.)

= 2.068 Bohr, calculations were made for R = 1.95 Bohr and 2.05 Bohr starting again

with set 2D (obtained for R = 2.068 Bohr), and this time singly optimizing only the

Cwhich may produce arysignificant improvement. Thus for these two additional points,

at most only eight Cp were singly optimized. The final wave functions for R = 1.85,

1.95, 2.05, and 2.15 Bohr are given in Tables IX, X, XI, and XII, respectively, and

careful comparison of the Cp values and vector components, Clp, of each with each

other and the results in Table IV for set 2D, indicates which Cp'S were-optimized and

how these quantities changed for the various R values.

Finally, to obtain values for the potential curve to the limits of Rin and

Rmax given from the RKR analysis (v - 21) and to obtain more points to employ for

interpolation purposes, calculations were also made for R - 1.65, 2.45, and 2.90 Bohr

again starting with set 2D. For each of these internuclear separations, seventeen

CtS were reoptimized (neglecting those Xp,, which are significant only for the inner

shells) and the final wave function for R - 2.45 Bohr is given in Table XIII. The

results now included reoptimized C values for the same basis set composition at eight

R values and curves for interpolation purposes were drawn for all Cp which do show a

64We will refer to the calculated Hartree-Fook-Roothaan potential curve as simply

%H(R). That is, we believe our best result is sufficiently close to the true

Hrtree-Fock potential curve to avoid introducing an EFR(R) curve.
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significant variation with R (these were curves for C p(R) for the 6g2s, 6gs2S, 5g2p,

6 2p', 6 3d, 6 3d', 5 4f; 6 u2s, 6 u2p; 7ru2p, u3d, and nu4f STO symmetry functions).

The Xpxa functions which have Ys'S which change significantly as a function of R are

either important in the 2 6g, 3 6g, 2du, or lru molecular orbitals (that is, have large

vector components) or involve high Ip values (1p = 2 or 3). The STO symmetry func-

tions in this latter category contribute improvements in the energy upon optimization

of Ys'S for various R values to an extent which belies the size of their vector com-

ponents. All of these curves of Cp versus R are smoothly varying, though more than

half are not linear. It was therefore relatively easy to interpolate Cp values for

these STO symmetry orbitals for internuclear separations between R = 1.80 and 2.50

Bohr to three or four significant figures. These results have afforded us the flexi-

bility to calculate EF(R) at many points, as further investigations required, with a

reasonable expectation that the results (wave function, 'nergies, and so forth) are as

accurate as possible and equivalent to optimizing the orbital exponents again for each

R value needed.

The preceding procedure of starting with the Hartree-Fock-Roothaan wave func-

tion for N2 with R = Re(Exptl.) = 2.o68 Bohr (Set 2D) and carrying out a long sequence

of single Cp optimizations, with no double optimizations or reconsideration of the

basis set composition, is believed to be quite satisfactory to obtain the Hartree-Fock

potential curve over a small range of R values around Re. This belief depends strongly

on the quality of the Hartree-Fock-Roothaan result at Re(Exptl.), that is, on the

quality of approximation to the true Hartree-Fock result as argued in Sec. III. B.

This is supported by noting the relatively small improvements in the energy upon

optimization of the orbital exponents, and is presumably due in large part to the

small change in the Hartree-Fock field with R over this limited range of R values and

the adequacy of the large expansion basis set used to absorb these changes via the

C.Ap vector components which indicate only a small readjustment as R goes from 1.85

Bohr to 2.15 Bohr.

The conclusion suggested from these calculations is that reoptimization of

orbital exponents for different R values is not very important for a large basis set

composition if the R values are near Re(Exptl.). (Or rather, if the R values are near

the R for which the basis set was originally constructed.) This conclusion is sup-

ported from other results for Li2 and C2 molecules.
57 5'8 Little direct evidence is

available, but presumably for small expansion basis sets, and especially for minimal

or double-C basis sete, reoptimization of the Cp for different R values becomes more
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important. These calculations show that as JR-R e(Exptl.)l becomes larger, reoptimiza-

tion of the non-linear variational parameters becomes more important and especially so

for X pAa with I = 2 or 3. Fig. 6 clearly illustrates this former point. The energy

improvement, AE, is the magnitude of the difference between EU(R) calculated using set

2D with reoptimized Cp values and EHF(R) calculated using Cp values of set 2D. The

open squares are for R = 1.85, 1.95, 2.05, 2.15, and 2.45 Bohr, as discussed above, and

the solid circles are for R values using interpolated Cp values. The plot of AE versus

R thus clearly shows the sequence of reoptimizations of Cp performed here contribute

an additional lowering of less than 0.001 Hartree for R near Re(Exptl. ) . The fact that

AE is not zero at R e(Exptl.) is no doubt indicative that another sequence of single

reoptimizations of Cp at Re (Exptl.) would lower the energy by -0.00005 Hartree which is

consistent with our earlier belief expressed in III-B. The scale in Fig. 6 is such

that this improvement appears large, but a clearer perspective of this relatively small

effect is more evident in Fig. 7.

The final results for the potential curve of N2 (X 1 ) include the original

result from set 2D at R = 2.068 Bohr, results for seven other R values with CP values

reoptimized, results using interpolated Cp values for the twelve turning points,
6 1

Rmin(v) and Rmax(v), with v = 0,1,2,3,4,5, and finally a number of additional points

using interpolated orbital exponents which are chosen to fill gaps in the curve. A

summary of the energy quantities for N2 (X 
12+) is given in Table XIV for a selected

group of R values.

The quantitative comparison of the calculated potential curve E.p(R), with

the curve obtained by Gilmore6 1 for N2 (X IZ+) will now be considered. The %(R),

the solid line in Fig. 7, is constructed from the calculations at the turning points,

%:in(v) and Rmax(v), given by Gilmore.6 1 Thus for Rin(v = 0,1,2,3,4,5) = 1.994,

1.941, 1.905, 1.878, 1.858, and 1.839 Bohr, respectively, and %ax(V - 0,1,2,3,4,5)

- 2.166, 2.239, 2.292, 2.340, 2.383, and 2.423 Bohr, respectively, two set of calcula-

tions are shown on the solid curve of Fig. 7. The solid circles are results using

interpolated or reoptimized p values and the open squares are results using the

values directly from net 2D. Several other points not at Rmin(v) or %ax(v) are also

shown, but this curve emphasized again how inconsequential reoptimization of the Cp

values was for various R values. The dashed curve was derived from Gilmore's results

for the first six vibrational states, use of Eexptl. = -109.586 Hartrees, and then

vertically elevating the resulting "experimental" curve so that the minimum was

llel with the minimum of ERH(R). This maneuver is to facilitate examination of the

diaplaoemant of Re and assess the quality of the shape of %H(R) for various
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vibrational states. The experimental curve was therefore uniformly elevated by the

amount IEexptl . - EHF(Re)1 = I 109.586 - 108.99561 = 0.590 Hartrees, in which both

E(R) values are taken at their respective minimum.

The shortcomings of EHF(R) when compared to the ERKR curve are that: i) the

EHF(R) curve is generally much too high, ii) the EHF(R) curve is shifted as a whole

inward to smaller R values relative to ERKR, and Iii) the EHF(R) curve is sharply

arcuated in contrast to ERKR(R) and this is especially evident on the large R side of

EHF(R). The effect of ii) dnd Iii) is such that lines drawn between EHF[Rmax(v)] and

EHF[Rmin(v)] for various v are not horizontal, as for the ERKR(R) curve, but are

tilted with the angle above horizonal increasing sharply as v increases (see Fig. 7).

If one now imagines that the solid curve of Fig. 7 is moved to the right such that the

minimum coincides with that of the dashed curve, then one would see that for v = 0 or

1 the shape is quite reasonable, but for v ; 2 the EHF(R) already rises much too high

on the large R side. Thus one might expect that molecular properties computed for

v = 0, 1 using EHF(R) would reflect properly the shape effects of the true potential

curve, but that for v = 2 or higher the shape effects would progressively be less well

represented. There would still be defects, however, since the nuclei would come to

close together in vibration and would vibrate in a potential well much too shallow.

We will continue this discussion in terms of the A(R) function below. A more signifi-

cant gauge of the quality of EHF(R), and the effects of i), ii), and iii) above, would

be to solve the vibrational-rotational problem using EHF(R) and compare the results

with experiment. This latter investigation is now in progress.

The foregoing discussion indicated that reoptimization of the orbital exponents

contributed very little towards improving EF(H) for N2 (X 
1z9). It seems certain that

the major features of EHF(R) are only slightly altered by such reoptimizations for A2

molecules when a large expansion basis set is employed and in light of the overall

poor quality of the potential curves given by EHp(R), reoptimizationsof C values forHF p
N+(X 2E+ , A 29u , B 2 Z+) molecular-ions were abandoned. The largest energy gain in

the reoptimizations for N2 (X lZ+) was - 0.001 Hartree and the only other N+ reoptimi-
zg

zation (that for the X 2Zg state at R = 2.0132 Bohr) gave an energy gain of 0.00006

Hartrees relative to the results obtained using the Cp's optimized at R - Re(Exptl.)

= 2.113 Bohr for N+(X 22+). It is a reasonable estimate that reoptimization of the

orbital exponents would produce no gains greater than - 0.002 Hartrees and probably

half of this size. Therefore EHp(R) curves for N2 (X 2Z+, A 2nU, B 2 ) were calculated

using the wave functions given in Tables V, VI, and VII, respectively, obtained at the
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Re(Exptl.) values. The resulting points for the potential curves are found in Tables

XV, XVI, and XVII for these three states of N.
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is the orbitals satisfying the physical self-consistency requirement of this model, we

can now examine how the model behaves in this regard. Thus, although all Re(HF) values

are shifted inward relative to the corresponding R (Exptl.) values and in spite of the

fact that the N2(X 2 Z) and N. A 2Iu) states are reversed, there is a strikingly close

analogy between the ARe shifts of theory and experiment upon ionization of N2 (X i+).

Thus for the loss of the strongly bonding electron in lw u symmetry, R e(Exptl.) goes

from 2.0741 Bohr (N2 , X 12+) to 2.222 Bohr (N+, A , an increase of 0.148 Bohr org' 2' u 2a i
6.13%, while Re (HP) goes from 2.0132 Bohr (N2 , X 3z) to 2.134 Bohr (N, A 2n)P a

parallel increase of 0.121 Bohr or + 6.0%. In an exactly analogous fashion AR (Exptl.)

for the loss of a weakly bonding 3o electron is + 1.88% compared to the calculated

value of + 1.26% and for the loss of an antibonding 
2 au electron, ARe(Exptl.) = -2.05%

and AR (HF) = -3.93%. Thus in every case the model gives good agreement and predicts

in each case less bonding in terms of ARe than the experimental results give. To good

approximation then, the far reaching concept of bonding and antibonding orbitals pre-

dicted by the theory seems relatively immune to the shortcomings of the Hartree-Fock

approximation. This tool can thus be extensively exploited in further investigations

of this series. Although no new information is provided in this paragraph, we wish to

stress that having obtained the results of the Hartree-Fock model, it seems obligatory

to critically examine how close the orbital concept, so solidly entrenched in molecular

spectroscopy, conforms with the model it assumes. In a companion paper to the present

effort5 9 the rearrangement of the electronic charge distribution upon loss of either a

3 ag, lvu, or 2 au electron is considered in terms of the electronic charge density con-

tours for the various orbitals themselves. This latter study could not be done by

using only virtual orbitals, but requires directly calculated wave functions for

N+(X 2g;, A 2HU, B 2+) ions as obtained here.

Let us now consider more quantitative aspects of the total energy values,

EHP(R), namely ionization potentials, dissociation energies, and the energy quantity

A(), defined In Sq. 111.10. Since relativistic effects are completely neglected in

these calculations, A(R) is not the variation of the usually defined correlation energy

with R because ERKR(R) implicitly contains all the physics of the problem as communi-

cated by the experimental data used in the RKR analysis. Therefore, we will refer to

A(R) as a quantity which measures the variation with R of the shortcomings of a given

approximate wave function, or in the present case, of the Hartree-Fock wave function.

The AIM - L,(R) - E o(R) curves for N2(1 Z ) and Nj(X Z., A u., states are

given in Fig. 11. The numbers used to obtain these c*irves come from the calculated

146



IV. DISCUSSION OF ENERGY QUANTITIES

The principal energy results are summarized in Tables XIV, XV, XVI, and XVII

for N2 (X 14) and N4(X 24, A 2 B 2 +), respectively. The variation of E(R),

THF(R), VHV(R), and ei(R) with internuclear separation for these four molecular systems

are shown in Fig. 8a, 9a, 9b, and 10a,b,c,d in that order. These results are claimed

to Hartree-Fock accuracy within at least 0.005 Hartree for EHV(R) and less for the

other quantities.
1_2+- 2+

The potential curves for N2(X 1Z) and N(X 2g, A 2 u, Z ) are given in

Fig. 8a and 8b. Figure 8a is the result of the present calculations as already described

and Fig. 8b is replotted from data of P. R. Gilmore. 61 The Rydberg-Klein curves of

Gilmore and Fig. 8b have been juxtaposed so that the calculated and "experimental" minima

of N2 (X lz) are exactly parallel. But note, that although the ordinate scale is the
g

same in Figs. 8a and 8b, and the abscissa scale and range is identical, the ordinate

ranges of Figs. 8a and 8b are different. The objective is simply to measure the inter-

nal spacings and relationships among the four states as calculated and compare these

with the experimental results. The small numbered horizontal struts in Fig. 8b indicate

the various vibrational states.

The first general impression in comparing the calculated EHp(R) curves with the

ERKR(R) curves is that the N+ states are all nearly correctly spaced above the N2 (X IZ+)g-

curve. One notes that all EHV(R) curves are shifted inward relative to the correspond-

ing ERKR(R) curves, all EHV(R) curves rise much too rapidly at large R, and that some

significant relative shifting has occured among the 2 states. The most significant

feature, however, as noted earlier, is the reversal of the N(X 2z+) and Nj(A Hu)

states over a substantial range of R values. This reversal of levels involves energy

differences of the order of -0.02 Hartree which is considerably too large to be ex-

plained as due to differential shortcomings of our approximation to the Hartree-Fock

result for these two states. We are confident that this reversal is a characteristic

feature of the Hartree-Fock approximation and hence must find an explanation in the

differential shortcomings of the Hartree-Fock results, or differential correlation

energy, for these two states of N.

It may be recalled that the concept of bonding, antibonding, or non-bonding

orbitals first arose in considering the change in R e(Exptl.) which resulted when an

electron vacated the particular molecular orbital in question. In as much as our

claims of having obtained to good approximation the molecular orbitals are valid, that
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results for EHF(R) at Rmin(v) and R max(v) and the results of Gilmore for ERKH(H) at the

corresponding R values. These curves all show the characteristic degeneration as H

increases and are not slowly varying (the gradient varys from about 0.11 Hartree/Bohr
for N + X 2g + to about 0.23 Hartree/Bohr for a part of the N + B 2Z+ u

or2' g N2, urefucin

of R around R e(Exptl.). It is also observed that the shortcomings of EHF(R) are only

slightly worse for N+(X 2z ) than for N2 (X l+), but these two A(R) curves are closely

parallel over a substantial range of R values. This is also seen in the potential

curves for N2 (X 1z+) and N+(X 2z+) states in Fig. 8a. Thus, except for a constant

relative elevation of the N (X 2 Z) EHF(R) curve, these two curves behave very similarly

to their counterparts in Fig. 8b. The point to be made here is that apparently breaking

of the 3ag2 pair in going to the X 2Z state of N is of but minor consequence as far

as the correlation energy is concerned. Or another way of putting it, these Hartree-

Fock calculations on N2 (X lz+) and N4(X 2 z) are closely comparable in quality. In

contrast to this, the A(R) curve for the A 2Hu state of N2 indicates that, relatively

speaking, the Hartree-Fock result is much better for this state than for N2, and the

final A(R) curve shows that the B 2u state of N2 is, relatively, the worse treated by

Hartree-Fock approximation. Thus the calculated EHF(R) curve for the A 2Hu state of

N is relatively lower than its experimental counterpart in Fig. 8a,b because somehow

the Hartree-Fock result for N(A 2Hu) is much better than corresponding results for

N (X 2X+) and N2 (X z+). It is certainly no coincidence that this behavior is associa-

ted with the loss of a strongly bonding lu electron in forming N (A 
2I11) from N2 (X I T).

In terms of breaking electron pairs the results of A(R) for the N(B 2 Z+) state result-

ing from breaking up the 2au2 pair also is significant. Clearly there is substantial

information in considerations of this kind about correlation energy, but until more

results are obtained for other homonuclear systems, the authors decline attempts at

any synthesis. The authors have no explanation of the reversal of the X 2Z + and A 2 u9 u

states of N2 relative to experiment and know of no explanations in the literature.

Several attempts have been made by Clementi65 and others to construct empirical corre-

lation energy corrections to be added on to the Hartree-Fock energies for molecules to

give accurate dissociation energies. The view in this paper is that insufficient data

is presently available to attempt to construct such an empirical recipe and this is

why the quantity A(R) was introduced. It is, we feel, imperative to get more results

for more electron configurations, for variable differences of nuclear charges, and to

obtain these results as a function of internuclear separation.

5E. Clementi, J. Chem. Phys. 2, 2780 (1963); 487 (1963).
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In Sec. III.D the defects of calculated potential curves for N2(X + were

considered to be loosely divisable into an elevation factor, a shift factor, and a

shape factor. We may now ask what these divisions means, if anything, in terms of the

A(R) quantity and can any useful quantitative or interpretative advantage be gained in

their employment? Let us first define the quantity

6R = Re(HF) - Re(Exptl.) , IV.1

that is, just the difference between the calculated equilibrium value, Re(HF) , and the
experimental Re value. For the N2(X lZ+) and N+(X A HUY B states the shift

g , ( 2 z)

in the position of the minimum is 6R = 0.061, 0.075, 0.088, and 0.098 Bohr, respectively.

A constant elevation factor for each state may also be defined as

ERM(Re(ExPtl.)] - EHF[Re(HF)] ,IV.2

which in magnitude is just the height the minimum of EHF(R) is above the minimum of

ERKR(R). The quantity A(R) can now be written

A(R) E (R) - EHF(R) + EO (R) - EHF(R)

.+ [ EO (R) - No (R - 6R)] - a(R) ,IV.3

in which EKR(R) and EF(R) refer to energies relative to their respective minima and

thus are to the same zero and are always positive. By definition a(R) is

a(R) = 0HFR) - Ejip(R-6R) iv.

The constant E is thus the elevation factor, a(R) is the shift factor, or the correction

to be subtracted at each R value to bring EHF(R) upon ERKR(R) such that the minima are

coincident, and EKR(R) - Ei(R-6R) is the shape factor6 6 measuring how the two curves

with coincident minima differ in details of their shape with R.

The major theoretical shortcomings of EF(R) relative to ERKR(R) are that:

i) EHF(R) does not go to the correct atom states upon dissociation, ii) EHF(R) is a

result which does not take account of the instantaneous interactions between the elec-

trons, the usually defined correlation defect, and iii) EHp(R) is the result of a calcu-

lation in which relativistic effects are neglected. Can these theoretical defects be

meaningfully associated with the elevation, shift., and shape factors just defined? Now

the constantE is -0.590, -0.605, -0.539, and -0.627 Hartree for N2 (X IZX) and N (X 2Z

A 2 u B u) respectively, and it is reasonable to associate this R-independent eleva-

tion factor primarily to the neglect of correlation and relavistic effects in the inner

shells, defects also present in the corresponding calculations for the separated N( 8)

atom and N+( P) ion. Not all of e can, however, be association with this source since,

as we will discuss below, the rationalized dissociation energy is

6'A related quantity in defined by A. D. McLean in J. Chem. Phys. '40, 243 (1964).
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is still only about 50% of the experimental value and therefore the remainder must be

due to An R-independent part associated with the correlation energy and relativistic

effects for the valence shell electrons of the atom as the molecule is formed. These

conjectures are consistent with the relative sizes of the F values for these four

electronic systems of N2 and Nj, and, presumably, the difference in Efor these states

is largely associated with their differences in correlation energy since one might

expect that relativistic defects for the molecules is approximately the same as for

the separated atoms, except if R is very small.

The shape factor giveni by E jM(R) - E__(R), which was already obliquely dis-

cussed in Sec. III-D, seems to be dominated by the fact that Ew(R) does not approach

the energy of the separated ground state atoms (or atom and ion) as R increases. The

shift factor, expressed either in terms of a(R) or 6R, indicates that, in the Hartree-

Fock approximation for the N2 molecule and the N+ molecular-ions, the nuclei are more

shielded from one another by electron charge distribution between them than is actually

the case.67 Thus, as might be anticipated, the neglect of the instantaneous inter-

actions between the electrons will increase the electron density in regions where it

is already high (and, of course, the instantaneous interactions are more important)

and tend to decrease the electron density in regions where it is too low. The shift

factor is thus largely ascribable to the R-dependent portion of the corielation energy

although it must also be associated with a sort of "stove-pipe" effect due to the

rapid rise of EF(R) for large R. 
34 ,6 6

In summary then, the arbitrary division of the defects manifested in A(R) and

the association of the elevation, shift, and shape parts with known theoretical short-

comings seems at this point only heuristic. This discussion was intended to attempt

an assessment of the shortcomings of E&F(R), staying as close to experiment as possible,

and to emphasize our belief in considering the various defects as a function of inter-

nuclear separation. The usefulness of a(R),E, a(R), and 6R will be critically ex-

amined for entire homologous and/or isoelectronic series of molecules at a latter data.

These concepts may offer an alternative or supplement to the present few empirical

schemes to obtain dissociation energies for diatomic molecules by estimating correlation

energies, and possesses the advantage of being a quasi-direct comparison with experiment.

The proposed analysis in terms of this division of defects of an arbitrarily calculated

potential curve, for example, from results beyond the Hartree-Fock approximation by

configuration interaction or perhaps by completely alternative methods, might also

serve as an objective standard for interpretive comparison of merits. It must be

67 All 6R values calculated have been positive for other unpublished diatomic molecules
and ions. ISO



remembered, however, that such a division is completely arbitrary and it is probable

that a sequence of approximate wave functions would lead potential curves which

approach the true curve along a contorted geo " Some useful data is expected to

emerge, however, such as studies of 6R versus IZA- ZBI or other parameters representing

the molecular system.

The calculated dissociation energy, De(R) is the "rationalized" value, which is

defined for a diatomic molecule, AB, by

-De(H) = E~(AB) -(A) + E(B) , IV.5

where D e(R) includes the zero point energy and is given here as a function of R. The

energy quantities, EjB)) P(AHP and %f ) are, respectively the calculated Hartree-

Pock energies of the diatomic molecule, AB, and the infinitely separated parts, A and B,

all in the appropriate electron configuration and state. De(R) as defined can be posi-

tive or negative, the latter simply corresponding to no binding if true for all R values.

The rationalization is that, ideally, one expects the molecular Hartree-Pock result to

approach the appropriate atomic Hartree-Fock results as R becomes very large, so that

i De(R ) at Re(HF) would be a good approximation to the true dissociation energy (De)

except for the difference between the correlation (and relativistic) corrections for

the AB and A+B systems.

In calculating De(R) we have used EJ--(N, 4S) = -54.40093 H.46 and EJH(N+, 3 P)

= -53.88799 H. and find that De(R = 2.0132 B.) = 0.1937 H. (5.27 eV) for N2(X IZ+),

D (R = 2.0385 B.) = 0.1190 H. (3.24 eV) for N+(X 2 +), D (R = 2.134 B.) = 0.1431 H.C 2 g e 11B)01J3H
(3.89 eV) for N+(A 21u), and D (R = 1.934 B.) = -0.01874 H. (-0.509 eV), unbound, for

N+(B 2 +). These De(R) values are quoted for R = R (HP) and not for R = R (Exptl.).2 u e e
These results again reflect the shortcomings already discussed, but compared to the

experimental results of 9.90 eV for N2(X lZ+) and 8.86 eV for N+(X 2ZI) these D values2 2 D e
are far better than most previous approximate results, being 53% and 37%, respectively

of the true value. In Fig. 2, which shows the improvement in the total energy an the

expansion basis set is built up in scheme one, it is evident that N2 (X lX+) is bound

relative to the Hartree-Fock atom results (also indicated on Fig. 2) from set 1E onwards.

The D e(R) curve can be obtained from polynomial curves for EHF(R) and EHP(N,4S) and

EHF(N+,3P). There have been several recent proposals of alternative ways of calcula-

ting De, such as that given by Stanton,
6 8 and the method suggested by Richardson and

Pack.69

R. E. Stanton, J. Chem. Phys. 36, 1298 (1962).
69j. W. Richardson and A. K. Pack, J. Chem. Phys. 1, 897 (1964).
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A rationalized ionization potential, Ie(R) can also be defined and is given by

-e (R) = E(AB ) (R) - E(B + (R) , IV.6

for the ionization of AB to form AB+. This definition includes ionization potentials

corresponding to excited states of the molecular ion AB+, in which case the appropriate

EAB+)(R) curves must be employed, and double ionization potentials can be similarlyEHF)

defined. The ionization potential curve in Eq. IV.6, Ie(R), is the "vertical" ioniza-

tion potential for AB if R = Re(HP), except that Ie(R) includes the zero point energy

of AB, and with this correction is the quantity allegedly measured as electron impact

ionization potentials. The related "adiabatic" ionization potential is defined here by

_,(a) = ()(Re) E(+) (Re') , IV. 7

that is, the difference between the minimal energy of AB at Re and AB+ at Re' (Re and

Re' are the Hartree-Fock minimal values). The experimental "adiabatic" ionization

potential measures the difference between the energy of AB(v = 0, J = 11) and

Ai+(v 0, J = $I), so that 1 (a) is slightly modified by the difference of the zero point= = Ie

energies of AB and AB+ . It should be recalled again, however, that the energy values,

AB+ (R), are for direct calculations for the molecular ions in question and are not

obtained from virtual orbital results for AB.

The "vertical" ionization potentials of N z) to form N(X 2 X,+A 2 u,N2(X g 2' go

B 2+u) molecular-ions, using results for eachobtained for R = Re(HP) = 2.0132 B., the

minimum for the EHF(R) curve of N2 (X 
1Z+), are calculated to be I (R = 2.0132 B.) =

16.01 eV, 15.67 eV, and 19.93 eV, respectively. The experimental values of Frost and

McDowell7 after adding on the zero point energy of N2 (X 
1z) are 15.77 eV, 16.98 eV,

and 18.90 eV, again in the same order (although no state specification is obtained by

the electron impact measurements). The directly calculated "vertical" ionization

potentials are thus 1.5% and 5.4% too high for formation of N'(X 2Z+) and Ni(B M )

and 7.7% too low for the formation N?(A 2U). Fig. lOs indicates the variation of the

orbital energys, e2ou ,5 Co, and elw, of N2 (X IZ+) over a small range of internuclear

separation and for R - 2.0132 B., the "vertical" ionization potentials using Koopmarn'

Theorem are 17.36 eV (+10.1% in error) for the loss of an 3og electron, 17.10 eV

(+0.71% in error) for the loss of an lr electron, and 20.92 (+10.7% in error) for the

loss of an 2 au electron. These values indicate that, as expected, the directly calcu-

lated values are generally better and are especially good (1.5%) when the correlation

effects in the neutral and ionized state are very similar. It is also to be noted
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that the "vertical" ionization potential to form N+(A 2Hu) given by Koopmans' Theorem

is astonishingly, and probably fortuitously, good. The full I e(R) curves can be

obtained by use of the EHF(R) polynomial curves.

One final set of "vertical" ionization potentials might also be mentioned

which involves the loss of two electrons by N2 (X 
1Z+) to form N+2(?). Certain double

ionization processes involving nitrogen have recently been re-examined by Dorman and

Morrison,70 who find two such potentials,71 one at 42.7 eV and another at 43.8 eV, but

no clear-cut association with particular states of N+2 is available from these elec-

tron impact measurements. It is not unlikely that there is a number of N 2 states in

this energy range above N2 and certain of these states are represented in Table VIII.

These N+2 calculations are crude compared to the N2 and N2 results in that no reopti-

mization of orbital exponents was attempted, but these are direct calculations again

for the states in question. For the double "vertical" ionization potentials of
1N+2,2 2 2.2

2(X Z+) we calculate that Ie (R = 2.0132 B.) 43.77 eV to form N 2 (26 u36 gl u,

3Zg), 45.20 eV to form N+
2 (26u 2 36g 2 17ru 2 , lag) and 46.18 eV to form N+

2 (26u2 30g i u 4

9 ~~2 2 21Z+) respectively. The N+ 2 (20u2 36 21U
2 , 1z+) state is probably also close by as are

a number of other states involving 26 u230 l7 3, 26 u36glw u, and 26u36g 2 1 7u electronic

configurations. Explicit knowledge as to which of these states are bound is not avail-

able from calculations performed. The I e(R = 2.0132 B.) given are probably uniformly

too high by about 0.2 - 0.5 eV due to relative crudeness of the N+ 2 wave functions

when compared to the N2 (X 1 Z+) results. We are not able to convincingly make any
g-

identification of the states of N+ 2 involved in the measurements of Dorman and Morrison
2

since it seems that N+2 has an abundance of closely grouped low lying states (about2

ten states). N3 is about 90 eV and N+ 4 is about 145 eV above N2 (X 
1 2+).

The "adiabatic" ionization potentials of N2 (X 
1X ) to form N 2(X 4g, A 2HUA

B 22 ) are well known from spectroscopic observations of Rydberg series of N2 and, in
U

general, ionization potentials measured in this way are the most accurate obtained.
NX1  2g+, 2n k 2 'sae f+ h xei

For ionization of N2( lz, to the X ,A and B 2+sae fN h xei

mental adiabatic ionization potentials are =(a) 15.585 eV, 16.74 eV, and 18.7-4 eV,

respectively, using the values quoted by McDowel172 and the relationship

7 0p. H. Dorman and J. D. Morrison, J. Chem. Phys. 2, 1906 (1963).

71No correction for the zero-point energy of N2(X 1 ) is made since the measured

values may be off by more than the zero-point correction (0.143 eV).

72C. A. McDowell, in Mass Speotrometr, edited by C. A. McDowell, (McGraw-Hill Book Co.,

Inc., New York, 1963), P. 54.
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,(a) =(a) + (w e  e-eX (e e , iv.8e 0 2e e - t(wx._ w1eX ~ e _~ y -

where the unprimed quantities are for N2 (X 1 +) and the primed values are for the

various states of N+ and (1 a) is the experimental "adiabatic" ionization potential.

The zero point corrections which are smaller than the uncertainty in ( ) are neglected

(usually the last two terms in Eq. IV.8) . The adiabatic ionization potentials calcu-

lated here are I a) = 15.99 eV. (X 2Z+), 15.34 eV. (A 2nu). and 19.74 eV. (B 2Z+) and
eted eg'

it should be noted that the calculated, and not the experimental, Re values are taken

as the minimal point in the EH(R) curves of N2 and N+. The adiabatic ionization

potentials are again in very good agreement as might be expected since the Re(HF) values

are not shifted very far in going from N2 to Nand the vertical ionization potentials

were good.

From these calculations on the ionization potentials we see that ionization

potentials can be calculated to within 10% at worse (using Koopmans' Theorem), but to

within about 5% for the directly calculated results. Furthermore, in those few cases

where the Hartree-Fock approximation is equally good for both neutral and ionized

system, then ionization potentials can be predicted to within 1 or 2%. Therefore it

is likely that Hartree-Fock calculations of the type described here, guided by more

experience, can help to identify the state of the ion that a Rydberg series is con-

vergent upon. It should also be feasible to construct empirical schemes based upon

Hartree-Fock results and estimates of differential correlation energies of AB and

AB+ to give Ie(R) or (-a) Just as schemes are now being proposed to calculate De by

Clementi65 and others.

It is traditional to calculate spectroscopic constants once a potential curve,

such as E%(R), has been calculated. This is usually done by performing the analysis

introduced by Dunham73 in which a polynomial fit is made to E%(R). We have conformed

to this tradition, but with certain misgivings. As is abundantly evident from the

potential curves in Fig. 7, the sharp rise of EH(R) for large R considerably perils

any conclusions which might be drawn about quantities calculated using E%(R) at large

R values. Stanton,6 8 Leies,7 4 Ooodisman,75 and McLean,66 ,76 among others, have

73J. L. Dunham, Phys. Rev. 4 713, 721 (1932).

740. M. Leies, J. Chem. Phys. , 1137 (1963).

75j. Goodisman, J. Chem. Phys. 9, 2396 (1963).

76A. D. McLean, J. Chem. Phys. A2, 2774 (1964).
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recently expressed certain ideas about the quality of potential curves, and especially

the quality of spectroscopic constants calculated from Hartree-Fock results for various

internuclear separations. In particular, Stanton has conjectured, "that Hartree-Fock

potential energy surfaces and exact potential energy surfaces are parallel over short

distances". McLean66 has questioned certain of Stanton's ideas based on calculations

for H2 and LiF and the results of the present paper are also in disagreement with

Stanton's conjecture quoted above. The spectroscopic constants presented in Table

XVIII are not given with the expectation that results of great accuracy are possible,

but rather to examine their deficiencies.

A number of different polynomial fits were made to EHF(R) for N2 (X lz+) in

which the number of points was varied from 4 to 10, and the overall symmetry of dis-

tribution of points was also independently studied. Certain of the less stable spectros-

copic constants were observed to vary wildly, especially when a small left or right

asymmetric distribution of points on EF(R) was employed, and to be worse when one point

was very near the minimum of the curve. For example, it was observed in this study for

N2(X lZ+) that 2681 4 w < 2773, 2.85 ' wexe 4 39.75, -7.072 4 G)eye 5.588, 2.119 4
2(X

Be < 2.124, and 0.0091 4 ae E 0.0187 for the various extremes of these results. Clearly

then a reasonable choice and distribution of points is obligatory and the use of a

symmetrical 10 point polynomial in R was adopted for these states of N2 and N2 .

The resulting spectroscopic constants obtained from the usual Dunham analysis

are compared in Table XVIII with the experimental results. It is thus concluded that

most spectroscopic constants are quite unreliable, but that at least for Be, ae, and

we the calculated results are always wrong in the same direction, i.e. too high or too

low. It may be possible for the theory to discount the assignment of a certain observed

state if the observed Be or we values are outside the ranges implied above, but positive

predictions seem impossible with this accuracy for A2 type molecules. The remarks,

however, are male from the results on N2 and N2 molecular-ions and for other cases, for

example, the diatomic hydrides, AH, the situation may be more favorable.

It has been suggested by Goodisman 76 that spectroscopic constants might be more

accurately calculated employing the force on the nuclei as a function of internuclear

separation. This is explored in paper III.B where expectation values and molecular

properties are considered. Leies,74 who states that "vibrational properties derived

from the SCF function would be valid", which contradicts the results cited, suggests

the direct comparison of AG values from the numerical solution of the nuclear vibration-

rotational problem using %I(R) and this study is in progress for N2 and Ni molecular

ions. These two alternative methods to the calculation of spectroscopic constants are
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important since the Dunham analysis is, generally speaking, rather crude. In a Dunham

analysis performed using the turning points and energy values calculated as described

in Sec. III.D for N2 (X 14), the spectroscopic constants were found to be Be = 2.00087,

Oe = 2271.4 cm-
1 , ae = 0.0406, and weXe = 71.65 cm-1 . This included only the potential

curve for v = 0 through 5, which is why wexe was so bad, but it does indicate the best

quality of results for Be and we that can be obtained from a Dunham analysis.

Embellishments of the Hartree-Fock potential curve to improve the spectroscopic

constants, such as suggested by McLean,7 6 seems to be of neglible importance in view

of the apparent intrinsic shortcomings of EF(R) in this regard.

The variation of the kinetic and potential energy with internuclear separation
2 _+ 2+

for N2(X 1z4) and N(X 259 A B1u , BX is shown in Figs. 9a and 9b, respectively.

The potential energy curves include the nuclear repulsion term. The major, and well-

known, feature is the decrease in magnitude of both the kinetic and potential energy

as R increases. The rate of decrease is large when R is small, for example, less than

Re(Exptl.), and gradually becomes smaller as R- -. It is interesting to note that the

order of the four states are identical for both T(R) and V(R) and that no curve-crossing

between the A and X 2g states of N2 is observed in either T(R) or V(R). In fact,

except for the B ,state of N the T(R) and V(R) curves seem nearly completely

parallel over the entire range of R values considered. That T(R) and V(R) for the

A 2 and X 2+ states of N are nearly parallel is not inconsistent with the result

shown in Fig. 8, in which the EF(R) curves for these two states cross at approximately

R = 1.92 Bohr. It is also noted that the loss of an electron from N2 (X 1Z), regardless

of the resulting . state, lowers the kinetic energy curve, T(R), much less than it

raises the potential energy curve, V(R). These curves are plotted from results given

in Tables XIV through XVII.

A relatively narrow cross-section through the molecular orbital correlation

diagram for N2 and N2 are shown in Figs. lla,b,c,d. These plots of e2, (R), 30 (R),

C2 u(R), and e Iu(R) are linear except for slight curvature over this narrow range of

R values. The ei for the N Ions are, of course, substantially lower than those for

N2 although the internal spacings and gross characteristics is about the same. The

only feature of interest here is the crossing of the e30 (R), e2 u(R), and elru(R)

curves. The order of the orbital energies at large R is 62a ( 62a < e 3 a< elu for
1+ andN+ A B 2 2+ g u u

N2 (X I g) and N 2+, A 2 u, B Zu) although their relative separatioravary. The

e is seen to cut across both e20 and e (except for the X 2Z+ and B 2+states,
uu £ sats

in which cases the second crossing seems to be for R less than the smallest H shown).
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Similarly the e26u curve rises and apparently crosses both e36 and e i u .  The order

at small R thus is e2g E < C < e u  Therefore the actual C values seem to
g6 9 7U 36 9 25u

behave well in correlating with the separated and united atom situations and the only

new infonnation is the precise behavior of the ei(R) over a narrow range of R and the

intersections of these ei(R).
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V. CONCLUSIONS

The extensive set of calculations which form the substantive basis of the pre-

sentation in this paper and the study by Hue2 for CO and BF comprise the only thoroughly

documented attempts at a critical study of the convergence of a heirachy of Hartree-

Fock-Roothaan wave functions to the true Hartree-Fock wave function for molecules,

except for the study by Kolos and Roothaan62 for the hydrogen molecule. On the basis

of these calculations and on the strength of the discussions given, the following con-

clusions are submitted.

(1) The solution of the Hartree-Pock-Roothaan equations for a carefully selected,

and sufficiently large, expansion basis set in terms of STO functions seems to approach

the true Hartree-Fock solution as evidenced in terms of certain energy quantities. This

conclusion is not very surprizing in light of the remarkably successful Hartree-Fock

calculations for first row atoms by Bagus, Gilbert, Roothaan, and Cohen46 and the

reasonable extension of these methods to another electronic system which differs basi-

cally only in having a bicentric character. Moreover, the accurate representation of

the molecular orbitals is realized by a practicable procedure, feasible for all first

row homonuclear diatomic molecules once sufficient information is available from a few

exhaustive pilot calculations.

(2) It is imperative to introduce expansion basis functions in a or au and

u or 7r symmetry which have Jp= 2 and 3 (d-type and f-type STO functions) as is also

emphasized by Nesbet.34 This is evident from the discussion given in See. III and

other important manifestations will be considered in paper III.B in regard to certain

molecular properties for N2 and N2 ions. The minimal basis set 29,30 and the double-

zeta basis set33 are seen to have serious short'omings when viewed comparatively in the

overall perspective of the basis set synthesis. The conclusion is that there is no

particular reason to obtain such intermediate results if the objective is to obtain

the Hartree-Fock wave functions and the concomitant molecular properties. These obser-

vations should suggest the exercise of caution in considering the merits of results for

diatomic molecules or polyatomic molecules which employ minimal basis sets. Ramifica-

tions of this problem are also considered in paper III.B in relation to certain molecu-

lar properties.

(3) A certain degree of flexibility should be exercised in employment of the

term "molecular orbital". We are referring here to the molecular orbital, that is the

canonical set of functions 91,, which satisfy the independent particle model, and not
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simply functions which are of proper symmetry and are "delocalized". The molecular

orbitals inferred in the study of molecular electronic spectroscopy are clearly only

approximately the molecular orbitals as given by the independent particle model. This

is exhibited in the present study in the reversal of the levels of the N (A 211Q and

N (X 2 Z) states and the c and el u for N2 (X I4X) relative to experiment. It is

claimed by Sinanoglu and Szasz that major vestiges of the orbital concept are retained

in elaborate theories beyond the Hartree-Fock model which include the instantaneous

interactions of the electrons of the system. This or similar explanations must recon-

cile the molecular orbital of theory and experiment in certain (and hopefully few) key

situations.

(4) Although the calculated "rationalized" dissociation energies are still quite

bad and the potential curves are all much too high relative to experimental results,

both not especially unexpected results, the calculated internal spacings of ionized

states are quite well predicted. The prospects of careful studies of the variation of

the correlation energy with internuclear separation and upon selective ionizations are

thus quite good. For complete homologous series and certain isoelectronic series such

raw data for the possible success of empirical correlation energy is thus close at

hand.

(5) Spectroscopic constants from Hartree-Fock calculations obtained by the

Dunham analysis of the potential curve are quite unreliable.

(6) A very encouraging result of these calculations is the relatively high

accuracy obtained for the directly calculated ionization potentials. The accuracy,

which should be relatively the same for other systems, indicates that we can calculate

ionization potentials to within about 5%. We have also seen that in some cases the

Koopmans' Theorem ionization potential may be much more accurate.

One final note may be made in this section about configuration interaction cal-

culations. Caution should always be exercised to distinguish generic and practical

improvements in wave functions. Thus configuration interaction calculations, such as

those of Praga and Ransil 0 are actually inferior in quality to the Hartree-Pock results

given here. Configuration interaction itself does not necessarily imply a blanket and

automatic improvement on inferior, but more exhaustively pursued approximations.
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10 1 0
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(a.) (b.)

Fig. 1.* Models or the Nitrogen Molecule: (a) the Lewia-Langmuir *Imbedded Pair"

octet model (1919), (b) the Bohr-Sommerfeld dynamic model (1921), and

(a) and (d), the Linnett "Modified Lewis-Langmuir" octet model.

(c) With electron apine up and (d) with electron spins down.
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Fig. 9. Calculated kinetic energy, T(R), and potential energy, V(R), curves for

N2 ( + adN+(X 2 x+ A 211 B2 +.(a) kinetic energy curve and (b)

potential energy curve.
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ELECTRONIC STRUCTURE OF CO AND BF t

Winifred M. Huo*

Laboratory of Molecular Structure and Spectra
Department of Physics, University of Chicago

Chicago, Illinois 60637

ABSTRACT

Single determinantal Self-Consistent Field wave functions calculated by the

expansion method are reported for the ground state of CO and BP. These calculations

were performed at four different internuclear distances, including the experimental

equilibrium internuclear distance. Exponents are optimized at all four distances.

Potential curves and dipole moment curves are obtained. From the potential curve,

spectroscopic constants are calculated via the Dunham analysis. An SCF calculation

was then performed at the calculated R . Exponents are also optimized. Expectatione
values of a number of one-electron operators, including the electric dipole moment,

the gradient of the electric field at the nucleus and the Hellmann-Feynman force, are

presented and compared with experimental data available. Contour diagrams for the

total charge densities and orbital charge densitites are included.
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I. INTRODUCTION

In recent years, several single determinantal SCF wave functions with extended

basis set 1 "8 for first row diatomic molecules have been calculated. They are fairly

good approximations to the Hartree-Fock functions. Three useful points emerge from

past experiences. First, the orbital exponents should be optimized. Second, in order

to describe adequately the distortion of atomic orbitals to form molecular orbitals,

functions with suitable angular characteristics, i.e., dd, dr, etc., should be added to

the basis set. 9'1 0'3 Third, the calculated dipole moment, besides the total energy, is

reasonable compared with experimental results.

It was shown by Brillouln,11 and also by Mller and Plesset,12 using a per-

turbation treatment of an n-electron system in which the Hartree-Pock solution is the

zero order approximation, that the Hartree-Fock charge distribution Is a representation

of the exact charge distribution correct to first order. Consequently, we expect

one-electron atomic or molecular properties, calculated from the Hartree-Fock functions,

to be rather good approximations to experimental quantities. A rather instructive

example of this was given by Cohen and Dalgarno,1 3 who calculated the expectation

values of a number of one-electron operators for helium with an SCF function1 4 and with

an accurate wave function.15 The expectation values calculated from the two wave func-

tions differ by less than 3 per cent, while the difference in total energy is 1.5 per

cent.

LW. Kolos and C. C. J. Roothaan, Revs. Modern Phys. 2g, 205 (1960); ibid. 32, 219 (1960).

2E. Clementi, J. Chem. Phys. _6, 33 (1962).

3R. K. Nesbet, J. Chem. Phys. X, 1518 (1962).

4S. L. Kahalas and R. K. Nesbet, J. Chem. Phys. 22, 529 (1963).
5A. D. McLean, J. Chem. Phys. 22, 2653 (1963).

6R. K. Nesbet, J. Chem. Phys. !0, 3619 (1964).
7K. Yoohimine, J. Chem. Phys. 40 297o (1964).
8A. C. Wahl, J. Chem. Phys. 41, 2600 (1964).

9R. S. Mulliken, J. Chem. Phys. 8, 234 (1940).
1 f. S. Mulliken, J. Chem. Phys. 3, 3428 (1962).
11L. Brillouin, Actualites sci. et ind. No. 71 (1933); ibid. No. 159 (1934).

1 2Chr. Mller and M. S. Plesset, Phys. Rev. 4, 618 (1934).

134. Cohen and A. Dalgarno, Proc. Phys. Soc. 77, 748 (1961).

14L. C. Green, N. N. Mulder, N. N. Lewis and J. V. Well, ftrs. Rev. 22, 757 (1954).
15C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
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The determination of a molecular Hartree-?ock function is tedious and expen-

sive. At present we have to work with the expansion SC? technique using a limited basis

set, and we therefore obtain only an approximation to the molecular Hartree-?ock func-

tions. It is of interest to know how well the energy and other molecular properties can

be calculated from these. From calculations of first row atoms I4 '16-20 it has become

clear that if the basis set is sufficiently large and well chosen, an expansion SCF

function is virtually the same as the numerical Hartree-Fock function and Brillouin's

theorem can also be applied to it. In the case of the 1-electron molecular systems we

dealt with, the maximum possible basis set allowed by the current program is not large

enough to expect the same degree of agreement as in the atoms. Convergence was observed

as the size of the basis set was allowed to expand and orbital exponents were reoptimized

upon addition of new basis functions. However, the rate of convergence of the SCF energy

with respect to the Hartree-?ock value may not be the same as that of other expectation

values. 21  This indicates expectation values of one-electron operators should be used

as criteria, besides energy, to judge how well an expansion SCF function with limited

basis set approximates the Hartree-Fock functions. Furthermore, different operators

are more sensitive in different regions of space, so their expectation values are tests

on how well the charge distribution in a certain region is represented.

Recently In the Laboratory of Molecular Structure and Spectra, computer pro-

grams for the IM3 7094 have been completed to calculate SCF wave functions for diatomic

molecules. A systematic study is under way to determine, with these programs, the best

approximate Hartree-Fook functions of diatomic molecules composed of first and second

row atoms. The present paper is a report on the calculations on CO and BI. These two

molecules, together with N22 form an isoelectronic system. Furthermore, CO is an

16p. 0. Lwdin, Pays. Rev. 90, 120 (1953).

1 7 C. C. J. Roothian, L. M. Sachs and A. W. Weiss, Revs. Modern Phys. 2, 186 (1960);

B. Clgeti, C. C% J. Roothaa and M. Toebimine, Phys. Rev. M 1618 (1962); C. C. J.

Rootlmam and P. S. Zelly, Ph".. NM,. 13. 1177 (1963).
18L. H. Sachs, Phys. Rev. 1241 1283 (1961).

1L. C. Allen, Z. Chem. Phys. a, 1156 (1961).

20p. S. BMW,, T. L. Gilbert, C. C. J. Roothaan and H. D. Cohen, (to be published).

21 . Goodlaman, J. Chem. Phys. 2&, 30 (1963).

22p. Z. Cade, K. D. Sales and A. C. Wahl, (to be published).
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important heteronuclear molecule because of the abundance of experimental data on it.

These two particular molecules were therefore chosen for the pilot calculations with

the heteronuclear diatomic SCF program.

II. REVIEW OF GENERAL THEORY AND APPLICATION TO HETERONUCLEAR DIATOMIC MOLECULES

In the atomic unit system, 23 the non-relativistic electronic Hamiltonian for

a heteronuclear diatomic molecule is

3C- ZA/rp - ZB/rB) + P l/r , (1)

where the summations are over the electrons; ZA and ZB are charges of the nuclei A

and B; r. and rB, are the distances from electron p to the two nuclei.

The SCF wave function is an antisymmetrized product of one-electron molecular

orbitals V..., where X refers to the symmetry species to which the orbital belongs, a

to the subspecies, and i labels orbitals not distinguishable by symmetry. The orbital

,Pi) is expanded in terms of a set of basis functions Xpkc according to

lia- Z XpXc 0 iXp (2)

The basis functions used are normalized Slater-type functions

XpXM(N) - R,%P(rN) YjXpMXa(ON"'N) , (3)

where N represents the nucleus A or B, depending on where the basis function is cen-

tered. It is the origin of the spherical coordinates rN, ON, % . The coordinate system

on either nucleus is so orientated that the positive Z-axis points toward the other

nucleus, as shown in Fig. 1.

2in the attic unit system, unit energ Is 1 Hartree (IN) - 2T.2096 ew, unit length

is 1 Bahr (IB) - 0.529172 A. See B. R. Cohen, K. M. Crowe and J. W. N. DuMond,

Fundamental Constants of Physics (Interscience Publishers, Inc., New York, 1957).
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The radial functions Vp(rN) are given by

RXp(rN) - [(2np) ' ] -( Xp)rp+ rNn>p'le - C p r N, (4)

and YAm (eN,N) are the spherical harmonics in complex form as defined by Rose.24

The expansion coefficients Cikp in Eq. (2) are determined by the Roothaan

procedure,2 5 - 2 7 in which the variation principle is applied to minimize the total

energy of the molecule. The total energy is given by the expression

E-HD + (- Do-2D o  (5)
where

Dix = Nixc ix . (6)

The index pair ix represents a shell which is composed of all orbitals Vixa belonging

to the same i and X; Nix is the occupation number of the shell. The closed shell,

open shell and total density matrices are defined as

DC% = - icclosedDix,

DOx = ipen D ix (7)

DTX DCX + DOx *

For the heteronuclear diatomic molecule, the one-electron matrix elements 9Xpq and

two-electron supermatrix elements-'Xpqgrs an2 Xpq,4rs are given by,

I/xpq = dxf1 fxc[ - - (ZArA 1 + ZBrB ' )]XqxadV (8)

xpq,.rs" (dxd)l Jfx;xc() Xd. (2)(l/r 2 ) Xqxa() Xe4(2)dVdV2
'  (9)

pqrs- (d d~F j ff~X (1) X ro(2)(1/rl 2 ) XB5L(l) Xqka(2dVd 2 (0

+ ffxpxa(l) X30(2)(1/r 1 2 ) X +(1) XqXa(2)dVldV2

S)Xpq,4Jro xpq,pre - k. .x)pq,prs (11

2 4 M. E. Rose, Elementary Theory of Angular Momentum (John Wiley and Sons, Inc., New

York, 1957) APPndix MlY.
25C. C. J. Roothaan, Revs. Modern Phys. 2, 69 (1951).

26 C. C. J. Roothaan, Revs. Modern Phys. 2, 179 (1960).

27C. C. J. Roothaan and P. S. Bagus, Methods in Computational Physics (Academic Press,

New York, 1963), Vol. 2, pp. 47-94.
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and for a molecule with one open shell, we have

Xpq,prs = a xpq,Lrs - bjCxpq,Lrs (12)

The constants a and b are determined by the symmetry and configuration of the open

shell.

The heteronuclear diatomic SCF program makes use of a very efficient and

accurate integration method for two center integrals as described by Wahl, Cade and

Roothaan.28  The SCF procedure is described by Roothaan and Bagus.27  One of its signi-

ficant operational features is that it provides automatic exponent optimization. A

single optimization27 is to determine the value of a single exponent C so that the

energy becomes a minimum. This is achieved by varying this exponent until five energy

values bracketing the energy minimum have been obtained, fitting a fourth degree curve

through these five points, so that the minimum energy and corresponding C-value can be

determined by interpolation. A double optimization27 is to obtain the value of two

exponents, C1 and C2' corresponding to the minimum of the energy surface spanned by

them. This is achieved by a procedure analogous to the single optimization, and

requires at least twenty-five independent SCF calculations. Double optimization is

used when two exponents are strongly "coupled"; i.e., the optimization of one exponent

greatly depends on the value of the other.

Matrices and supermatrices in the SCF program are stored in triangular form

with maximum economy; no redundant elements are stored and neither are elements which

are necessarily zero. The number of matrix elements Nmx is related to the number of

basis functions by

N NX(N + l) , (13)

where N. is the number of basis functions of symmetry X. The number of supermatrix

elements Ns. is given by

Nsmx = Nmx(Nmx + 1). (14)

The heteronuclear diatomic SOP program allows a maximum of 172 matrix elements

and therefore 14,878 supermatrix elements, which, for our present case of 0 and 7r sym-

metries, limits the number of basis functions to the values given in Table I. In

28A. C. Wahi, P. i. Cade and C. C. j. Rooth&an, j. Che. phya. 41 2578 (l964).
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addition to this limitation, the efficient organization of the numerical integrat.on

process8 necessitated an upper limit to the number of basis function in any given sym-

metry; in our program this number was set at 16.

III. CALCULATION OF WAVE FUNCTIONS AT EXPERIMENTAL Re

The ground state for both CO and BF is a I7+ state with the electronic con-

figuration 1622523525217 562. The experimental equilibrium internuclear distance,

Re' is 2.132 B 29 for CO and 2.391 B30 for BF. These data, together with nuclear

charges, specification of the basis set and an approximate set of expansion coefficients,

are required as input 31 to the SCF calculations.

The size and composition (n, 1, C) of the basis set determine how good an SCF

wave function we can acquire. Since the maximum size of the basis set is limited by

the program, it is necessary to spend a great deal of effort on the choice of a suit-

able basis set within the allowable size. We also want to find out how to build up

such a set in the most economical way. For CO and BF, two completely independent

approaches were used to build up the basis set at the experimental Re-

Gradually Built Up Set

Ransil3 2 reported a minimal basis set for both CO and BF where the exponents

are obtained by Slater's empirical rule. The basis functions used were le, 2s, 2p6

and 2pw functions on each nucleus. We used these functions as ct starting point, and

optimized all the exponents. This optimized set shall be referred to as the minimal

set. To the minimal set we gradually added basis functions, one or two at a time,

until the basis set reached the maximum allowable size. Each time when new basis

functions were added, their exponents were optimized with, in general, a sequence of

single and double optimizations. If a new basis function was optimized with a double

optimization, it was coupled with one already in the basis set or another new basis

function. Sometimes a single optimization was carried out on a basis function the

exponent of which seemed to be affected by the addition of new basis functions.

2D. H. Rank, A. H. Guenther, 0. D. Saksena, J. N. Shearer and T. A. Wiggins, J. Opt.

Soc. Am. 5, 686 (1957).

30 R. Onaa, J. Chem. Phys. 17, 3T4 (1957).
31A detailed description of the input convention for the heteronuclear diatomic SCP pro-

gram is available at the Laboratory of Nolecular Structure and Spectra, U. of Chicago.

-32B. J. Ransil, R*a. Modema Phy. n,2 245 (1960).
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It is, of course, desirable to subject all exponents in a basis set to repeated

optimizations so that a true minimum of the energy as a function of all the non-linear

parameters is assured. This, however, would be such a time-consuming process that,

even for the fastest computer currently available, it would be very impractical for

the size of basis set necessary for this type of calculation. Instead, only a limited

number of single and double opitmizations were used. Presumably, if optimizations

are done in a suitable order and the exponents are coupled correctly, we can obtain a

result close to what would be obtained from a complete exponent optimization. However,

there is no straightforward guide to the correct procedure. Experience gained from

similar calculations is of course very valuable, but even so, a new molecule often

requires experimentation peculiar to it. In this research, exponents important in the

inner orbitals were optimized first, and then those important in the outer orbitals.

The importance of a basis function was judged by the magnitude of its coefficients in

the expansion of the one electron orbitals. The general rule used for double optimiza-

tion was: when a new basis function was added to the set, we looked for the orbital

to which it made a significant contribution; the basis function most important to this

orbital was then coupled with this new basis function and a double optimization was

carried out on them.

If the addition of a basis function, after optimization as just described,

yielded a significant energy improvement, it was kept in the set and other trial basis

functions were added. If the contribution to the total energy by the addition of this

basis function was small (usually less than 0.0015 H), it was rejected.

After the basis set reached its maximum possible size, all exponents were

subjected to single optimizations until the energy improvement from further optimiza-

tion was less than 0.O001H. The basis set was then considered 'completely" optimized.

Atomic Built Up Set

fter the gradually built up set was well under way, It occurred to us that,

if we used a basis set from atomic calculations on the two constituents of the molecule

as a starting point, we could, in a much shorter time, obtain a molecular SCF function

which was as good an approximate Hartree-Fook function as that calculated from the

gradually built up set. We used the atomic results calculated by Bagus, Gilbert,

Roothaan and Cohen.20 They made some very careful studies on the size and composition

of basis sets needed to represent the atomic Hartree-Fock functions with a given accu-

racy. For the first row atoms, they obtained four basis sets for each state they cal-

culated, i.e., the accurate, nominal, marginal and minimal sets. We picked their
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nominal set, which is the next to iargest set; the differences in total energy as cal-

culated from the accurate and nominal sets are 0.00004 H, 0.00008 H, 0.00025 H and

0.00041 H for the ground state of B, C, 0 and F respectively. We then made modifica-

tions and additions to this set, based on the experience gained from working on the

gradually built up set. Exponents were optimized until the energy improvement from

further optimizations was less than 0.0001 H.

Table II presents, in chronological order, the total energy and dipole moment

of CO as the gradually built up set was allowed to expand. Table III presents the same

quantities for the atomic built up set at different stages of exponent optimizations.

The final basis set compositions and eigenvectors of coefficients are presented in

Table IV and V for CO and BF, respectively.

The total amount of machine time used for the gradually built up set was

longer than for the atomic built up set, even though exponent optimizations for the

former were inexpensive initially when the size of basis set was small. However, as

the basis set expanded, repeated optimizations were necessary, since otherwise basis

functions added first would sometimes take too heavy a load. At worst, the exponent

set might be "trapped" during the process. The exponents are trapped when the opti-

mized values have settled in an auxiliary minimum rather than the absolute minimum of

the energy surface. It is to be noted that if the basis set is large enough, auxi-

liary minima almost always exist. A bad initial choice of exponent values, and/or an

injudiciously chosen order of adding basis functions, may cause trapping.
L

An actual case of trapped exponents occurred for the gradually built up set

of CO. Since both the gradually and atomic built up sets were large and carefully

optimized, their orbitals could be expected to be close if they were good approxima-

tions to the Hartree-Fock function. Furthermore, since the basis functions for w sym-

metry were of the same type, in the sense that exponent variations could bring about

the identity of the two sets, their exponents and coefficients should be close. How-

ever, they were not so for the 2pi 0 functions, as seen in the first two columns of

Table VI. If we assumed, then, that the ( orbitals were physically the same in spite

of not strictly comparable basis sets, we concluded that the 2pw 0 basis functions were

trapped in one case, most likely in the gradually built up set. Hence, we replaced

the 2prO0 exponents in the gradually built up set with the atomic built up values and

reoptimized the set. The energy improvement was significant, as seen in the third

column of Table VI.
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The atomic built up set was more economical to attain because it started out

with exponents that were already carefully optimized in the atomic SCF calculations.

It also had the benefit that exponents were optimized with all constituents of the

final basis set present. "Trapping" thus was much less likely to happen than with the

gradually built up set, and, so far as we know, did not occur. There is no guarantee,

however, that trapping cannot occur in the atomic built up set.

Even after taking advantage of many economies possible within current compu-

tational technology, our program apparently still does not allow a large enough basis

set to obtain the molecular Hartree-Fock functions for 14 electron systems with suffi-

cient accuracy. This is evident from the fact that calculations by the two approaches

of building up basis sets do not give identical results, as discussed in Section V.

From our experience with the two approaches, it appears that if a sufficiently large

basis set is allowed, it is advisable to start out from an accurate atomic basis set
20

and add enough other basis functions for an adequate description of the formation of

the chemical bond. Essentially the same conclusion was drawn from recent work on

LiF,5 F28 and N222

IV. CALCULATION OF POTENTIAL CURVES

It is desirable to calculate SCF functions at several different internuclear

distances besides the experimental Re . From these calculations we can then determine

a potential curve, and also the dependence of molecular properties on the internuclear

separation.

To obtain a meaningful potential curve, it is necessary that all points on the

curve are calculated equally well. If we insisted on full optimization for each value

of R, this would necessitate a very large amount of computer time. Instead we calcu-

lated at three internuclear distances besides the experimental Re, partially optimized

SOP functions, starting in each case from the unoptimized atomic built up set, and

optimizing all the exponents once, singly (i.e., uncoupled), and in the same order.

After these were done, considerably more optimizations were carried out at the experi-

mental Re only. These further optimizations yielded an improvement in the total energy

of 0.00017 H for CO and 0.00022 H for BP, compared to 0.00203 H for CO and 0.00168 H

for BF from the first series of optimizations. Of course, the intermediate results for

Re, when all exponents were optimized singly, and which are comparable to the calcula-

tions for the other R values, were used for the construction of the potential curve.
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We found it desirable to obtain more points on the potential curve by direct

computation. Since the optimized exponents were found to be smooth functions of R,

it was possible to interpolate for other R values. Using the interpolated exponents,

we made single SCF calculations(with no exponent optimizatio4 at three other R values

for CO and BF. These results were also used for the construction of the potential

curve.

For BF the exponent optimizations were first carried out at R = 2.385 B, which

had one time been reported as the experimental value of Re.
3 3 However, when the com-

putation was well under way, it was realized that more recently the value 2.391 B had

been obtained.'0 We later reoptimized all exponents for Re - 2.391 B, but used the

calculations for 2.385 B for the potential curve, so that all.points on the curve were

obtained in a consistent manner.

The calculated points of the potential curves for CO and BF are given in

Tables VII and VIII; the curves themselves are shown in Figs. 2 and 3.. From the cal-

culated curves we computed the spectroscopic constants for C1201
6 and B1 1 F 1 9 via the

Dunham analysis.3 4 The results are compared with experimental data in Tables IX and X.

The differences between the calculated and experimental values are partly due to the

fact that our calculations have not completely converged to the Hartree-Fock functions.

However, we believe that most of the discrepancy is due to the basic shortcoming of

the molecular orbital theory. In most cases, including CO and BF, molecular orbital

type wave functions do not dissociate to the proper limit of two ground state atoms,

but rather to a mixture of ionic and neutral states. Therefore, the wave function is

a better representation of the molecular system at R 4 Re than R > Re' Consequently,

the computed potential curve is somewhat different from the correct curve.

In addition to the two final SCF functions calculated at the experimental R.,

we present in Tables IV and V for CO and BF, respectively, the SCF functions calculated

at the three additional internuclear distances where exponent optimizations were done.

Since molecular properties evaluated at the SO calculated Re are to be com-

pared with experimental quantities, we computed SCF functions for both molecules at

the calculated Re . For this calculation we started with interpolated exponents as

mentioned above, and optimized part of the exponent set. An exponent was singly

33G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., Princeton,

New Jersey, 1950).

34J. L. Dunham, Phys. Rev. 41, 721 (1932).
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optimized if its optimization at the experimental Re yielded an energy change of more

than 0.00004 H, or if its optimization at the next closest R on the potential curve

yielded more than 0.00013 H. These SCF functions are also included in Tables IV and V.

V. CALCULATION OF MOLECULAR PROPERTIES

The expectation value of a one electron operator which has Cv symmetry is

given by the expression

<¢jtj>-- M'D ,(15)

where the elements of the matrix M is written as

/MXpq dx' 1 Z f X * a xqxa dV (16)

We can then define shell properties as

<M>I.X =HtjX DiX (17)

Obviously we have the relation

It should also be pointed out that the wave function is normalized to the number of

electrons in the system, N;

<-I->=,$D = N , (19)

where S is the overlap matrix

= -1 f X *pXa Xqxa dV (20)

The computed molecular properties for the ground state of CO at both the

experimental and calculated Re are summarized in Table XI. Table XII presents the c-r-

responding quantities for BF. For the results at the experimental Re, we present those

computed with the two final sets, namely the gradually built up set and the atomic

built up set, as well as those obtained from the minimal set. In addition, results

intermediate between our minimal and final sets obtained by Nesbet 6 are also included.

All the exponents in his basis set, with the exception of the 3d functions, were not

optimized. We reproduced his functions with our programs and, in order to make the

comparison with our results complete, we calculated from his functions a few additional

expectation values which he did not compute.
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The properties at the calculated Re are evaluated with the atomic built up

set because this is the only set we used to obtain an optimized SCF function at that

R value. In addition, we present Nesbet's values6 for the dipole moment, dipole deri-

vative and molecular quadrupole moment of the two molecules evaluated at the Re deter-

mined from his potential curve. These values, however, are not directly computed with

an SCF function at the calculated Re; rather, they are interpolated from the results

computed at other R's.

A number of experimental data available for the two molecules are also pre-

sented in Tables XI and XII. It is to be emphasized that our calculations use the

Born-Oppenheimer approximation and are carried out at a particular internuclear dis-

tance. Most experimental data, however, apply to the ground vibrational state as a

whole. To make the experimental and calculated quantities strictly comparable, we

should therefore integrate the calculated molecular property over the ground vibrational

wave function. This is of course desirable, but has as yet not been carried out.

However, if the ground vibrational wave function is symmetrical around Re, and if the

calculated property has a linear dependence on R, then the molecular property evaluated

at Re is the same as that integrated with the ground vibrational wave function. This

is certainly approximately the case, so that a molecular property computed at the Re

of' the SCF potential curve (calculated R e) can be considered as an SCF property.

Therefore, it can be meaningfully ccnpared with the corresponding experimental value.

In order to compare SCF properties calculated with different basis sets, it

is necessary to obtain a potential curve for each basis set and make SCF calculations

at the Re of each potential curve. Obviously this will require too large an amount of

computer time. On the other hand, if two SCF functions are very close to the Hartree-

Fock function, their computed properties at the experimental Re should also converge.

Therefore, even though molecular properties computed at the experimental Re are not,

strictly speaking, SCF molecular properties, they are very useful for the comparison

of different basis sets when results at the calculated Re are not available for every

basis set.

We notice that, in the molecular properties calculated at the experimental

Re from the gradually built up set and the atomic built up set, there are some signifi-

cant differences, indicating that we have not yet reached the Hartree-Fock function.

On the other hand, we are rather confident that the charge distribution calculated with

either function resembles the Hartree-Fock value to two figures, since the expectation

values of one-electron operators calculated from the two independent approaches all
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agree with each other to two or three places.

For the same size of basis set, energy values calculated from the atomic built

up sets are better than those calculated from the gradually built up sets, although

much less effort was spent on the former.

The expectation values of several one-electron operators related to the geo-

metry of the charge distribution, <rc2 >, <r 0
2 >, <zC2 >, <z 0

2 >, <x 2 , <r C + ro>and the

corresponding quantities for B and F are all larger for the final sets than for the

minimal set, indicating that outer regions are better described when the basis set is

allowed to expand.

Since no comparable SCF calculations have been completed yet for the low lying

states of the positive ions of CO and BF, the ionization potentials of these two mole-

cules are, instead, calculated by means of Koopmans' theorem,3 5 ,2 5 which states that

the vertical ionization potentials are, to a good approximation, the negative of the

orbital energies. The validity of the theorem, at least for the two molecules we deal

with, is essentially confirmed: the differences between calculated and experimental
3 6

values, for the first three ionization potentials, are all within 10 per cent.

The difference between the experimental total energy37 and that calculated

from the Hartree-Fock approximation consists of the sum of the correlation energy EC

and the relativistic contributions ER, i.e.,

Eexp - ESCF = EC + ER. (21)

For the isoelectronic sequence N22 CO and BF, their Values are quite uniform, as

seen in Table XIII. The uncertainty in the value for BF is due to the experimental

error of its dissociation energy.38 Since there is no reliable estimation of the

35T. Koopmans, Physica 1, 104 (1933); G. G. Hall and J. Lennard-Jones, Proc. Roy. Soc.

(London), A202 155 (1950).

'For CO the first ionization potential is taken from F. H. Field and J. L. Franklin,

Electron Impact Phenomena and The Properties of Gaseous Ions (Academic Press, Now

York, 1957), p. 110. Second and third ionization potentials are taken from Donnes

Spectroscopiques Concernant les Molecules Diatomiques (Hermann and Cie, Paris, 1951),

p. 69. For BF the first ionization potential is estimated by D. W. Robinson,

Journal of Molecular Spectroscopy, 11, 275 (1963).

37B. J. Ransil, Revs. Modern Phys. 32, 239 (1960).

38 A. 0. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules (Chapman and

Hall Ltd., London, 1953), second edition (revised).
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relativistic effects, we cannot draw any conclusion about the correlation energies of

this isoelectronic sequence.

Another interesting quantity in the comparison of the isoelectronic series

N2, CO and BF is the orbital order of these molecules. Table XIV presents the orbital

energies of the three highest occupied orbitals of these molecules, and the change in

orbital ordering across the series is shown in Fig. 4.

The virial coefficient39 is given by

<v>/<T>- -2 - (R/•T>)(dE/dR) (22)

At the minimum of the potential curve, the second te-'m on the right hand side of

Eq. (22) drops out. Therefore, at Re we have

<V>/<T>- -2 . (23)

Also by virtue of the shape of potential curve for diatomic molecules, at. R < Re we

have

S<V> /<T> I< 2 ,(24)

and at R > Re we have

I<V>/<T>l >2. (25)

Hence the virial coefficient is useful in testing whether a particular internuclear

distance is at the minimum of the potential curve. The virial coefficient at the

calculated Re satisfied Eq. (22) to five figures both for CO and BF.

An important molecular quantity is the average value of the gradient of the

electric field at the nucleus. This quantity, for the nucleus A, is given by the

expression

q- - e(2ZB/R3) - <( cos 2 eA-1)/rA 3 • (26)

Experimental meaureament of the quadrupole hypezrfne splitting of an atoo or a linear

molecule containing a nucleus with a quadrupole moment % is expressible in terms of

the combined parameter eqQ,. Therefore, the nuclear quadrupole moment Q. can be

39J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill Book Company,

Inc., 1963), Vol. I, pp. 30-33.
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evaluated from the experimental value of eqQN and the calculated q. The two center

integrals <X p(A)I (3cos2eA-l)/rA31Xq(B) > and <X p(B) I(3cos28A-l)/rA3 xq(B)> were eva-

luated by the Coulson-Barnett method, in which the Slater-type functions on center

B are expanded in terms of radial functions and spherical harmonics on center A, fol-

lowed by an analytical integration of the angular part, and then a numerical integra-

tion of the radial part.

Rosenblum and Nethercot41 measured the hyperfine splitting caused by the 017

quadrupole moment in C017 and found eqQN to be 4.43 * 0.40 Mc/sec. Using this result

and the calculated q at the oxygen nucleus, QN of 017 is evaluated and shown in Table

XV. The previously reported value42 for QN of 017, evaluated from atomic data, is also

presented. The atomic result is obtained from Harvey's experimental data4 3 and the

evaluation of <(3cos 2-1)/r3> by Bessis, Lefebvre-Brion and Moser,42 where 0 is a

superposition of configurations based on the ground state configuration calculated with

the expansion SCF technique. The agreement between the atomic result and our values

is good.

The dipole moment L is given by the expression

gI - e[(Z B - ZA)R -<z)j . (27)

The coordinate system used for the evaluation of <0Izlo> is such that the origin is

at the midpoint of the two nuclei, with the positive Z-axis pointing toward center B

(carbon or boron).

The values of the dipole moment of CO as calculated for the R values where

the exponents were optimized are presented in Table XVI. By least square fitting to

a quadratic equation, we obtained the following expression for the dipole moment of CO

0co " 0.158 + 5.4p + 1.7p2 , (28)

where p - (R - Re)/Re the calculated Re is used for the expression of p. The dipole

moment 4 is in Debye units, and is defined as positive for C+O".

The solid curve In Fig. 5 shows the calculated dipole moment curve of CO. It

is seen that this curve is almost linear, so that it is meaningful to compare the

4 0 C. A. Coulson and M. P. Barnett, Conference on Quantum-Mechanical Methods in Valence

Theory (Long Island, N. Y., September, 1951).

41B. Rosenblum and A. H. Nethercot, Jr., J. Chem. Phys. g7, 828 (1957).

4. Besss, H. Lefebvre-Brion and C. Moser, Phys. Rev. 128, 213 (1963).

433. HRuvey (to be published).



dipole moment of CO calculated at Re with the experimental value. In Fig. 5 are also

shown two other curves, which are based on the semi-empirical equation given by

Mulliken
44

PCO = 0.118 + 9.lp + 3.7p2 , (29)

where the experimental-R e is used for the expression of p. Eq. (29) is based on the

experimental data by Matheson45 and the resonance structures of 00, namely C'nO+ ,

C=0, and C+-O-, as suggested by Pauling46 and Mulliken.44 For intermediate ranges of

R, where Eq. (29) holds, the triple bond structure C -O+ is important at smaller R

values, so the dipole moment is C-O+; the single bond structure C+-O" becomes predomin-

ant as R becomes larger, so the dipole moment is C+O . Near Re the two structures

C+-O" and C'O + contribute almost equally, thus producing a very small dipole moment.

This chemical behavior can also be used to interpret Eq. (28) that we obtained.

At the time when Eq. (29) was obtained, the absolute sign of the dipole moment

of CO was not experimentally known; therefore, there was an uncertainty in the sign of

the first term in the equation. Subsequently, the sign of the dipole moment of CO was

deduced by Rosenblum, Nethercot and Townes47 to be C-O+ from a measurement of the shift

of the magnetic moment in the J - 1 rotational state of varying Isotopic species of CO,

namely C12016, C13016, C1401 6 and 012018. Our calculated results are in disagreement,

with their conclusion (see Table XI). As mentioned earlier, the expectation values of

one-electron operators are probably good to two significant figures in our wave func-

tions. Furthermore, the magnitude of our calculated dipole moment is comparable to the

experimental value. 4 8  If our estimation of accuracy is correct, a more accurate SOP

function is not likely to give C-0+. We believe that a further investigation of the

experimental situation as to the sign of the dipole moment of CO is in order.

The comparison of dipole moment of CO calculated with different basis sets is

a good illustration on the convergence of computed molecular properties. In Figs. 6

and 7, the solid lines represent, respectively, the dipole moment and total energy of

"R. S. Nul1ken, J. Chem. Phys. 2, 400 (1934).
45L. A. Matheson, Phys. Rev. 40 813 (1932).

46. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New

York, 1948), 2nd edition, p. 135.
47B. Rosenblum, A. H. Nethercot, Jr. and C. H. Townes, Phys. Rev. 0 400 (1958).
480. A. Burrus, J. Chem. Phys. 28 42T (1958).
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CO, calculated at the experimental Re at different stages of the gradually built up

set; the dotted lines give the same quantities at different stages of optimization of

the atomic built up set. The comparison of these two figures clearly shows that the

dipole moment does not converge at the same rate as the energy, and that if a calcula-

tion with a moderate basis set gives a dipole moment in close agreement with experiment,

this must be regarded as fortuitous.

Table XVI also presents the values of the dipole moment of BF calculated at

the four values of R with optimized exponents. From these four values of a we

obtained the following expression by least square fitting to a quadratic equation

4BF = -1.05 + 6.9p + 4.3p
2 ; (30)

the negative sign of pBF corresponds to B'F+
. The above equation is also supported

by the resonance structures B+F - , B-F, B-=F+ and B---=F+ + . For intermediate ranges of

R where Eq. (30) holds, the double bond and triple bond structures are predominant at

smaller R values, and the dipole moment is B-F +; the single bond structure is more

important at larger R, so the dipole moment becomes B+F
- . Fig. 8 shows the dipole

moment curve for BF. There are no experimental data on the dipole moment of BF.

At the midpoint of the two nuclei, the molecular quadrupole moment Q is given

by

Q - (jR)2 (ZA + ZB) -
2 r 2 >. (31)

The molecular quadrupole moment for a polar molecule is not invariant upon coordinate

transformation. At present, no directly measured experimental values for the Q of the

two molecules are available.

The Larmor term of molar diamagnetic susceptibility is given by

XL - -1/6 NA r 0 
< r 2 > , (32)

where NAv Is Avogadro's number, r0 - e 2 /Bc 2 is the classical electron radius. No com-

parable experimental data is available for this quantity either.

The total Hellmann-Peynman force4 9 on a heteronuclear diatomic molecule, cal-

culated with the exact Hartree-Fock function at the Re as defined by the Hartree-Fock

4H. Hellmann, Einf~hrung in die Quantenchemie (Deuticke, Leipzig and Vienna, 1937);
R. P. Peyrman, Phys. Rev. 56, 340 (1939).
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potential curve, can be shown 50 to satisfy the relation

.A + 5B = 0, (33)

where of coursePA is the force on nucleus A, and is expressed by

= ZA e2[<coseA/rA2 > - ZB/R2 . (34)

In Tables XI and XII, it is seen that the total Hellmann-Feynman force, computed at

the calculated Re, does not satisfy Eq. (33) identically. This shows that our wave

function has not reached the Hartree-Fock function.

The molecular charge density at a point r is given by

P(z) = ixr = P(z)T. (35)
x i

The elements of the matrix P(r) is written as

Pxpq ) = dXj1 Z •x(r) (36)

a pXQ- x-

The charge density of a shell i% is given as

Pi( = P ¢r)" Di. (37)

and the orbital charge density is

= W dx -l P (c) (381

It should be pointed out that the charge density of a it shell is the sum of the

densities of 7r and iT orbital.

A contour line of given charge density C on the xz plane is defined as

P(xz) - C . (39)

Fig. 9 shows the total molecular charge density contours for CO, calculated with the

atomic built up set at the experimental R. Figs. 10-13 show the correspending orbital

density contours of the 36. 46, 50 and 1 orbitals of CO. The total and partial con-

tours for BF shown in Figs. 14-18 are also calculated with the atomic built up set at

the experimental Re.

50C. W. Kern and N. Karplus, J. Chem. Phys. 1O, 1374 (1964).
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In the comparison of the contour diagrams of the two molecules, we notice

the strong resemblance in the general shape of their orbital contours. For both mole-

cules, the 30 orbital haslargest amount of charge between the two nuclei. The orbital

contours of both molecules have molecular type nodal planes besides the atomic type.

For example, the 36 orbital of CO as a 2S0 nodal plane, but there is another nodal

plane near carbon which is not of atomic origin. Furthermore, the number of nodal

planes is not directly related to the orbital ordering, as in the atomic case.

The average position along z-axis of an electron in an iXa orbital is

<1/Ni ><z>:,. This corresponds to the position of maximum charge density in the

orbital contour. Their values for CO and BF, are given in Table XVII.

The difference between the total charge densities of two wave functions

01l. and 02 is

A()= Pl(r) (r~= P1 (r) -P2i(r) (40)

The total charge density difference contours between the atomic built up set

and gradually built up set at the experimental Re are shown in Fig. 19 for CO and

Fig. 20 for BF.

VI. DISCUSSION

In the comparison of various molecular properties with experimental data or

their theoretical limits, we can conclude that the calculated wave functions for CO

and BF are good approximations to the Hartree-Fock functions. After a study of this

kind on a series of molecules, we will have better knowledge on the reliability of

this type of wave functions. They can then be employed as useful tools in the under-

standing of molecular structure and as building blocks for more elaborate calculations

in the future.
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TABLE I. MAXIMUM NUMBERS OF BASIS FUNCTION" FOR 6 AND n SYMMETRY

Basis functions of 6 symmetry 16 15 14 13

Basis functions of v symmetry 8 9 11 12

Total number of matrix elements 172 165 171 169

TABLE II. TOTAL ENERGY AND DIPOLE MOMENT OF CO CALIJ(ULATED FROM DIFFERENT STAGES OF

EXPANSION IN THE GRADUAL BUILT UP SETa,b

Run Total Dipole
No. Basis Set Description Energy (H) Moment (D)

1 1i0  2SO, 2p6O, 2pr 0
lsC, 2sC ,9 

2p( C , 2p7rC  -112.39103 0.464 (C'O+ )

2 Above set + is', Is6 -112.43784 0.450 (C-O+)

3 Above set + 2s', 2s -112.52244 0.416 (C0-+)

4 Above set + 2pvr, 2pT6 -112.66252 0.623 (C+O-)

5 Above set + 2p66, 2pa C -112.70152 0.393 (C+0-)

6 Above set + 3d60 , 3d6C -112.72942 0.368 (C+O-)

7 Above set + 3dvo, 3d C -112.77394 0.107 (C+O-)

8 Above set + 2p7r" -112.77653 0.143 (C+O-)

9 Above set + 4flrc -112.77810 0.147 (C+O")

10 Above set + 3s0  -112.78023 0.147 (C+O- )

11 Above set + 3sc -112.78164 0.137 (C+O")

12 Single optimization on all exponents

in above set except the Is type -112.78283 0.208 (C+O")

13c  Single optimization on 2Sc, 2s6, 2p0C, 1
2pd6, 3s -112.78335 o.189 (C+0- )

14 Use atomic built up oxygen n functions,
and single optimization on all 7r func-
tions -112.78437 0.188 (C+O")

15d  Single optimization on 2sC , 2s, 2pdC0
3so, 2p7O, 3d7o -112.78452 0.183 (0+o")

16e  Single optimization on 2SC 2s, -112.7845 9  O.181 (C+O")

aThe results presented here are from additions of basis functions kept in the final

set. The results from other trial functions which are not kept in the final set are
bomitted.
Each run was carried out with exponent optimizations.
cThis run reoptimized all the exponents whose optimizations in run 12 lowered the total
energy by more than 0.00010 H.

dThis run optimized all the exponents whose optimizations in run 13 and 14 lowered the
total energy by more than 0.00004 H.

eThis run reoptimized all the exponents whose optimizations in run 15 lowered the total
energy by more than 0.00002 H.
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TABLE III. TOTAL ENERGY AND DIPOLE MOMENT OF CO CALCULATED FROM DIFFERENT STAGES Or

OPTIMIZATION IN THE ATOMIC BUILT UP SET

Run Total Dipole

No. Basis Set Description Energy (H) Moment (D)

1 1o, ls, 280, 380, 2po , %, 2p , 2p ,

3d60, 2pwo 2pwjr, 2pw", 3dwo, lsc' l.6,

2p7r, 3dlrC, 4frC unoptimized exponents -112.78380 0.326 (C+O")

2 Single optimizations on iso, Is, 1 C

1s6, 2so, 3So, 2 Sc 3sc  -112.78516 0.284 (C+O")

3 Single optimizations on 2p60, 2p66,

2p6C, 2p%, 2piro, 2p~r6, 2prC, 2pr6 -112.78526 0.290 (C+O)

4 Single optimizations on 2p6", 2p5 ,

2pr", Xo60, 3d6c, 3dro, 3drc, 4firc -112.78583 0.289 (C+o")

5 Double optimization on 2so, 3s0 -112.78589 0.296 (C+O-)

6 Double optimization on 2 C, 3sC -112.78600 0.274 (C+O- )

7 Double optimization on 3ddO, 3ddC -112.78600 0.274 (C+O- )
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TABLE VI. EXPONENTS AND EXPANSION COEFFICIENTS OF 2pr 0 FUNCTIONS

FROM DIFFERENT BASIS SETS OF CO.

Set A Set Bt Set C

2p'r0  0.98035 1.47330 1.45228

Exponents 2p 1 1.91497 2.84829 2.82360

2p " 4.07397 5.78456 5.86534

Expansion 2po0  0.11122 o.44163 042529
2p-io 0.56952 0. 37505 0. 39023

Coefficients
2p71r 0.18908 o.o4463 o.o4340

Total Energy (H) -112.78335 -112.78600 -112.78437

Gradually built up set.

tAtomic Built up Set.

*Gradually Built up Set with Atomic Built up Oxygen fr Functions.

(Exponents were reoptimized.)

TABLE VII. POINTS USED FOR THE CONSTRUCTION OF THE POTENTIAL

CURVE OF CO.

R(B) E(H)

-112.7554

2.015b  -112.7841

2.132a  -112.7858

2.2 49b -112.7700

2.3668 -112.7428

2. 483 b  -112.7088

2.600 a -112.6710

aCalculated with optimized exponents.

bCalculated with interpolated exponents.
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TABLE VIII. POINTS USED FOR THE CONSTRUCTION OF THE POTENTIAL

CURVE OF BF.

R(B) E(H)

2. 000a  -124.1077

2.192 5b -124.1567

2.385a -124.1658

2. 5 7 7 5b -124.1547

2.770' -124.1343

2. 962 5b -124.1103

3.155a  -124.0857

aCalculated with optimized exponents.

bCalculated with interpolated exponents.

TABLE IX. SPECTROSCOPIC CONSTANTS FOR THE GROUND STATE OF C1201 6

Calculated Experimental
a

)e (cm- ) 2431 2169.829

WeX e (cm- 1) 11.69 13.295

Be (cm
- ) 2.027 1.931285

ae (cm- ) 0.01525 0.017535

Re (B) 2.081 2.132

k (105 dyne cm-1 ) 23.86 19.02

aSee reference 29.

TABLE X. SPECTROSCOPIC CONSTANTS FOR THE GROUND STATE OF BIIFI9

Calculated tperlaentala

we (cm-1 ) 1496 1402.1

)ee (cm-l 12.07 11.8

Be (cm" ) 1.559 1.510

as (c M- ) 0.01851 0.016

Re (B; 2.354. 2.391

k (105 dyne cm 1) 9.189 8.071

&See Reference 30.
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TABLE XIII. DIFFERENCES BETWEEN EXPERIMENTAL AND SCF TOTAL ENERGY (H) FOR N2, CO AND BF

N2 a CO BFb

0.5904 0.5891 0.5926 - 0.6286

aSee reference 22.

bThe uncertainty is originated from the error in the experimental measurement

of the dissociation energy of BF. See reference 38.

TABLE XIV. ORBITAL ENERGIES (H) OF THE THREE HIGHEST OCCUPIED ORBITAL OF N2 , CO AND BF

N2
a  CO BF

4a (2au) -0.76870 -0.80595 -0.86190

50 (3og) -0.63789 -0.55048 -0.40162

lir (1vru ) -0.62845 -0.65073 -0.75210

asee reference 22.

TABLE XV. NUCLEAR QUADRUPOLE MOMT OF 017 (BARN)

Molecula Resultab -0.0236 , 0.0021

Atomic Result0  -0.024

&The field gradient used in the calculation is evaluated with the atomic

built up set at calculated Re .

bThe error associated with the molecular results is due to the error in the

experinantal amaurement of eqs. See reference 41.

0 See reference 42.
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TABLE XVI. DIPOLE MOMENT OF CO AND BF AT DIFFERENT VALUES OF R.

CO BF

1.898 0.302 (C'O+) 2.000 1.99 (BPF+)

2.132 0.289 (c+O- ) 2.385 0.967 (B'F + )

2.366 0.930 (C+O") 2.770 0.315 (B+P " )

2.6oo 1.61 (C+O- ) 3.155 1.80 (B+F-)

TABLE XVII. AVERAGE POSITION OF AN ELECTRON ALONG Z-AXIS

COa,
c  BO,c

i0 0.0004 0.0002

2a 2.1313 2.3898

30 0.5819 0.2279

4a 0.0250 0.0424

5a 2.6360 3.1965

liT 0.5138 0.1533

aorigin at oxygen nucleus.

borigin at fluorine nucleus.

CCalculated in Bohr unit with the atomic built up set at experimental Re .
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HARTREE-FOCK-ROOTHAAN WAVE FUNCTIONS, POTENTIAL CURVES, AND CHARGE DENSITY

CONTOURS FOR THE HeH+(X1Z+) AND NeH+(X1X+) MOLECULE IONS."

Sigrid Peyerimhoff

Laboratory of Molecular Structure and Spectra
Department of Physics, University of Chicago

Chicago, Illinois 60637

ABSTRACT

Hartree-Fock-Roothaan wave functions for the ground state of the HeH+ ion and

the NeH+ ion are reported. The potential curves for HeH+ and NeH+ are calculated using

wavefunctions, which are optimized at the equilibrium distance and also at each inter-

nuclear distance, and their relative behavior is discussed. The Hellmann-Feynman

forces on the nuclei are studied as a function of the internuclear distance with regard

to the size of the basis set and optimization of the wave function. Spectroscopic data

are calculated in different ways, a dissociation energy of 1.74 eV for HeH+ and 2.03

eV for NeH+ is computed, and calculations made to find the center of negative charge

for every internuclear separation. Electron density maps are plotted for several

internuclear distances in HeH+ and for the total wave function and the individual

molecular orbitals of NeH+ at the equilibrium distance.

I. INTRODUCTION

Rare gas hydride ions (HeH+, NeH+ , AH+) were first observed in mass spectro-

meters around 1933,1 and in recent years a number of experiments have been carried out

tComputations reported in this paper were supported by Advanced Research Projects

Agency thru the U.S. Army Research Office (Durham), under Contract DA-II-022-ORD-3119.

Present address: Department of Chemistry, Princeton University, Princeton, New Jersey.

On leave from Department of Theoretical Physics, Justus Liebig University, Giessen,

Gerr.any.

1H. Lukanow, W. Schuetze, Z. Physik 82, 610 (1933); K. T. Bainbridge, Phys. Rev. 3,

103 (1933); J. W. Hiby, Ann. Phys. Lpz. 4 473 (1939).
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to study their properties, especially their formation and reactions.2 These ions have

only a short lifetime and are formed in low concentrations which makes the experimental

measurement of their properties by conventional means difficult. It is therefore,

highly desirable to obtain accurate wave functions for these molecules which enable us

to calculate the spectroscopic constants for the ground state and other molecular

expectation values and properties.

The (HeH)+ rare gas hydride ion is of particular theoretical interest because

it is the simplest two electron system among the heteronuclear diatomic molecules and

therefore plays a prototype role, similar to the role the hydrogen molecule plays

among the homonuclear diatomic molecules. Besides this, there has been considerable

interest in this ion - or more exactly in the (He3H)+ ion, since it is the resulting

ion when tritium of the TH molecules undergoes P-decay.

The two recent calculations on (HeH)+ which also present spectroscopic data

are the calculation by Evett,3 who employs a James-Coolidge type wave function, and

the configuration interaction calculation using one-electron basis functions in con-

focal elliptical coordinates by Anex.4 Unfortunately, these methods can be applied to

systems with more electrons only with great difficulty at the present. On the other

hand, it has recently become possible to obtain SCF-LCAO-MO wave functions to the

Hartree-Fock accuracy for systems with several electrons using high speed digital com-

puters and programs constructed in this laboratory. Furthermore, it is well known

that the expectation value for any one-electron operator computed in the Hartree-Fock

approximation should coincide with the exact values to second order terms in a pertur-

bation expansion of the exact wave function, in which the zeroth order term is the

Hartree-Fock function for the system. Therefore, one purpose of this work was to

2D. P. Stevenson, D. 0. Schissler, J. Chem. Phys. 24, 926 (1956); H. Gutbier,

Z. Naturforsch. 12a, 499 (1957); T. P. Moran, L. F. Friedmann, J. Chem. Phys. 2,

2491 (1963) and references therein.

3A. A. Evett, J. Chem. Phys. 24, 150 (1956).

4B. G. Anex, J. Chem. Phys. 38, 1651 (1963).

5 After this work was completed, a calculation on HeH+ using a one-center wavefunction

was published by J. D. Stuart and F. A. Matsen, J. Chem. Phys. 41, 1646 (1964).
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obtain Hartree-Fock-Roothaan wave functions for the ground state of the first two

molecules, (HeH)+ and (NeH)+ , in the series of the rare gas hydride ions and then

calculate expectation values, which should predict the experimental values with reason-

able accuracy.

There are reasons to believe that the correlation energy in the rare gas

hydride ions is approximately the same for the whole range of the internuclear dis-

tances, from the united atom to the separated atoms (rare gas atom and proton); this

assumption will be discussed further in a later section of this paper. It implies

that the Hartree-Fock and the exact potential energy curve are of the same shape and

therefore, the potential curve for both molecules were calculated. Thus, in this

special case the depth of the potential curve should also give a good value for the

dissociation energy which cannot usually be obtained in such a direct way from a

Hartree-Fock calculation for molecules other than the rare gas hydride ions. Such a

potential curve will also be useful in proton-helium and proton-neon scattering

calculations.

Charge density contours have also been calculated to give some insight into

the electronic structure of these systems.

Since calculations for both molecules are treated to a comparable level of

sophistication, I assume that conclusions based on the comparison of the present

results for (HeH)+ with those of Evett3 and Anex4 (which are assumed to be close to

the exact solution of the SchrBdinger equation) should apply in a similar manner to

a comparison of the (NeH)+ results to the exact solution.

II. GENERAL METHODS OF CALCULATION

The well known theoretical basis for this type of calculation is given by

Roothaan,6 the computational details are described in two recent articles by Wahl

and Huo. 7 The calculations were carried out on a IBM 7094 using the HETEROPOLAR

DIAT(3MC SCP PROGRAM of this laboratory, chiefly written by Dr. W. Huo.

6C. C. J. Roothaan, Rev. Modern Phys. ?J, 69 (1951).
7A. C. Wahl, "Analytic Self-Consistent Field Wave Functions and Computed Properties of

Homonuclear Diatomic Molecules", J. Chem. Phys. 41, 2600 (1 964).

W. Huo, "The Electronic Structures of CO and Bl', (to be submitted for publication

to J. Chem. Phys.).
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A. The Construction of the Wave Function

The molecular wave function is an antisymmetrized product of molecular orbi-

tals (MO's) which are expanded in terms of Slater-Type-Orbitals (STO's) centered on

the nuclei. The set of STO's which is used in constructing the MO's is referred to as

basis set composition for the total molecular wave function.

There exist no unique general rules concerning the number and the type of

atomic orbitals which are necessary to represent a molecular orbital set with respect

to accuracy and economy in computer time. However, considerable experience has been

obtained in this laboratory in constructing Hartree-Fock-Roothaan wave functions with

extended basis sets for different diatomic molecules, and the main features of this

problem are discussed at length by Cade, Sales and Wahl. 8 Apparently the best way is

to start with the Hartree-Fock basis set(s) for the substituent atoms and augment this

basis set by additional functions which take polarization effects into account, and

then to optimize all the orbital exponents of the basis set.

The Hartree-Fock energy for He(s 2 ,1S) is obtained from a basis set of three

functions (ls(t = 1.45 ), 2s(C - 1.732), 2s'(C = 2.641)). Three additional functions

were added to this basis set and then the energy was calculated for the IE+ state of

(HeH)+ at an internuclear distance of R = 1.44 B, which is, according to earlier

publications, 4 close to the equilibrium internuclear distance. The exponents of the

three additional functions were singly optimized first, and then the exponents of all

six functions were singly reoptimized proceeding from the most important to least

important STO in the expansion of the 16 molecular orbital. Among all basis sets with

a total number of six functions which were tried, the basis set with a supplementary

polarizing 63d STO centered at the He-nucleus and a O1s and a 62p STO at the H-nucleus

seemed best. For this 4 x 2 set, as we shall subsequently refer to it, various double

optimizations (61SHe and 6 2 SHe , 
6 2 SHe and 6 2 Ske, and Ols H and 62pH ) i.e., optimizations

of two exponents simultaneously, were carried out in addition to the single optimiza-

tions mentioned previously. Part of the potential curve was calculated using this

function and then at the value of the internuclear distance which corresponds to the

minimum of this curve (R = 1.45 5 B., slightly larger than the first assumed value of

1.44 B.) all of the orbital exponents were again singly optimized.

"P. E. Cade, K. D. Sales and A. C. Wahl, 'The Electronic Structure of Diatomic Molecules

III. N2 and N2 Ions", (to be submitted to J. Chem. Phys. for publication).
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Further extension of the basis set composition gave only a small improvement

in the total energy, and with eleven functions in the MO-expansion the energy was

almost independent of the basis set composition. (Calculations were made with several

7 x 4, 6 x 5 and one 5 x 5 set.) Finally, we chose a 7 X 5 set that gave a value for

the energy which changed by less than 3 x 10 -6 H. when another STO was added. All

orbital exponents of this set were then optimized using both single and certain double

optimizations. Thus two different final wave functions were obtained for HeH+, a

4 x 2 set and a 7 x 5 set, both at Re (calculated).

For NeH+ we started with a basis set of 10 functions for Ne,9 and made a few

preliminary calculations with a molecular basis set of 14 functions, in which only the

exponents of the 4 additional functions have been optimized, to find the approximate

value for the equilibrium internuclear distance. At R = 1.9 a.u., which seemed to be

close to Re, various calculations were carried out in order to find the best basis set.

Most of these calculations were done with a basis set of 24 functions. For NeH+ a

basis set of this size seems necessary to get a wave function with Hartree-Fock

accuracy, and it is the upper limit which can be handled by the present program. It

was not feasible to optimize exhaustively each of the different basis sets (an optimi-

zation of all exponents in the 4 x 2 set took approximately 20 min., in the 7 x 5 set

2j hours and for a set of 24 functions about 30 hours computation time on a IBM 7094)

and therefore it was sometimes very difficult or even impossible to decide which of

two basis sets, giving almost the same energy, would give better results after the

optimization. The comparison could be made only with respect to the energy as no

other properties of NeH+ are known. The final choice of the llx 5 x 6 x 2 basis set

with eleven 6-functions and six v-functions at the Ne-nucleus and five 6-functions

and two v-functions at the H-nucleus might thus be arbitrary to some extent. The

exponents of this set were then optimized at R - 1.9 B, but without any double optimi-

zations. After part of the potential curve had been calculated with this function,

R - 1.83 B. seemed to be a better approximation to Re, and therefore we reoptimized

all exponents at R = 1.83 B.

B. The Calculation of the Potential Curves

The potential curve for (HeH)+ was first calculated using the 4 x 2 and 7 x 5

functions with orbital exponents optimized at R = 1.455 B., and the potential curve of

9 P. S. Bagus, T. L. Gilbert, C. C. J. Roothaan and H. D. Cohen, "Analytic Self-

Consistent Field Wave Functions for First-Row Atoms', (to be submitted to Phys. Rev.)
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(NeH)+ using the 11 x 5 x 6 x 2 basis set with orbital exponents optimized at R = 1.83

B.. These curves progressively lose accuracy at R values gradually decreasing or

increasing from Re(HF) since the orbital exponents in the wave functions have their

optimal values only at the minimum of the curve. Therefore, one can expect to obtain

a reliable Hartree-Fock potential curve only if the orbital exponents are optimized in

some manner at several internuclear separations. In both the 4 x 2 and 7 x 5 basis

sets for (HeH)+ all orbital exponents were singly reoptimized at each R value con-

sidered. For the 11 X 5 x 6 x 2 basis set of (NeH)+, fifteen of the twenty-four

orbital exponents, mainly those which seemed to be the most important and sensitive

to a change in the internuclear distance, were singly reoptimized at most R values

employed.

C. The Calculation of the Charge Density Contours

The total electronic charge density, p M), for a single determinant wave

function, constructed from N doubly occupied MO's can be obtained as;

N

i=l

where (p are the MO's, or in terms of STO's, Xki as;

N
p() = Z2 IZcik Xki12 , (2)

1~ k

where eik are the linear expansion coefficients of the molecular orbital, pi(-. The

corresponding partial charge density for a single MO, p(_), can be calculated from:

p.(7) 2 Icik Xki, 2 • (3)

These calculations for (HeH)+ and (NeH)+ for several R values were carried out using

a charge density program constructed by Dr. Sinai and Mr. Olive of this laboratory.

III. RSULTS AND DISCUSSICN

A. The (HeH)+ Molecule Ion

Tables 1 and 2 present the 4 x 2 and 7 x 5 Hartree-Fock-Roothaan wave func-

tions for (HeH)+ at R (HPR), respectively and also the energy quantities for thee
ground state. Inspection of the results in these two tables shows that the mprove-

ment of the largbr basis set (7 x 5 basis set) is small with regarl to the total enrY,
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The contribution of all six atomic orbitals in the 4 x 2 set is considerable, whereas

the 3dHe, the secord O2SH, the 63dH and especially the 64fHe orbital in the 7 x 5

set seem to be of little importance. However, this 64fHe function gave an energy

improvement of approximately 1.5 X 10 5 H. which could not be obtained from the set

without this orbital Just by changing the exponents of the other remaining functions.

Several calculations have also been performed with additional Ols, 62s, 62p or 3d AO's

for He, and 62p and 64f orbitals for H, using two or three different values for their

exponents, but we did not include these functions in the final basis set because their

effect seemed negligible. The largest energy variation (adding the 62pH or d
4fH

orbital) was approximately 3 X 10-6 H.. A second optimization of the exponents of

the original basis set (without additional functions) gave about the same value.

In Fig. 1, we plotted the potential energy curves for HeH+, which we obtained

by using the different basis sets. Curves A and B result from the 4 X 2 and 7 X 5 sets

respectively, with the exponents optimized only at the equilibrium internuclear dis-

tance. The 7 x 5 basis set yields the curve B', if the optimization is done at each

internuclear separation. Table 3 lists the corresponding values and also the results

for the 4 x 2 basis set optimized at each internuclear distance (column A'). In the

scale of Fig. 1 this curve could hardly be distinguished from curve B' and for this

reason has not been included there. The few energy values which are in brackets have

not been calculated by carrying out the optimization for the exponents but by using

c-values that have been interpolated for that particular R-value from the neighboring

calculated exponents. For two R-values the energy has been determined in both ways

and the agreement found to be better than 10-6B.. Thus, we expect these values in

brackets to have the same accuracy as the other values given in this table.

The wave functions for the different points on the potential curve have also

been obtained but are not listed here. These results are available upon request.

An interesting feature of Fig. 1 is the fact that the general behavior of the poten-

tial energy curves is correct for large internuclear separations; the curve approaches

the Hartree-Pock energy of the separated atoms He and H+ (the horizontal dashed line

in Fig. 1). This behavior cannot usually be obtained by a single determinant wave

function, but rather requires at least mixing of several configurations. However, in

this special case of the rare gas hydride ions we expected it. Assuming that the cor-

relation energy in the separated atoms and in the molecule at every internuclear

separation is approximately the same, one should be able to calculate a potential

curve which is shifted in comparison to the exact one by the correlation energy of He,
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but shifted as a whole without/distortions. This assumption seems reasonable because

both in the separated atoms and in the molecule we have a 2-electron system with one

doubly occupied shell; in terms of configuration mixing He - H+ is the most important

configuration, and a configuration with significantly different correlation energy

(He+ - H) should be of little importance (perhaps very small R values excluded) since

the ionization energy of He is much higher than that of H.

The 7 x 5 set has more flexibility than the 4 X 2 set and therefore at larger

R values gives much better values for the energy than the 4 x 2 set, so that the dif-

ference between the two curves A and B, which is relatively small at the equilibrium

separation, increases considerably when moving further apart from R e . The behavior

of the curve B' compared to B is to be expected. The corresponding values from the

4 x 2 set also behave as expected as can be seen from column A and A' in Table 3.

Remarkable is the fact that for R = 2.8 B. and all larger R values the numbers in

column A' are lower than those in column B , which means that the larger and more

flexible basis set with non-optimized exponents is not able to give the same improve-

ment in the energy as a poorer function with properly chosen exponents.

One further comment may be of some interest: the energy values at larger

internuclear distances are approximately proportional to R-4, as one would have ex-

pected for the potential between a charge and an induced dipole. Stuart and Matsen5

noticed also this E vs. R-4 behavior in their calculation and discussed it in detail.

From the description of the whole calculation it has probably become clear

that great effort has been made to get an energy as low as possible. There exist no

exact experimental data with which to compare our results; therefore, it is difficult

to ascertain how closely convergence has been obtained in the procedure of adding

basis functions to a small set. In comparison to extended calculations which have

been performed in a similar way for sevt'al other molecules where such comparisons are

possible, I0 our calculated energy should certainly be within Hartree-Fock accuracy.

The same conclusion can be drawn from Table 4 which compares the energy values of the

optimized 7 x 5 function with the most accurate values for HeH+ that are so far avail-

able. The difference between these values is fairly constant over the whole range of

R values from 1 B. to 2.2 B. but is slightly smaller than the correlation energy of

He (0.042044 H.), probably due to the fact that the values in the first row are still

not exact, especially at larger R values where the difference should certainly approach

lOPrivate communications from W. Huo for CO and BF, P. Cade for N2 and Li2 , and P. Cade

and W. Huo for first row hydrides. Also see Refs. 7 and 8.
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the correlation energy of He. Furthermore, the last row of this table supports our

assumption concerning the shape of the potential energy curve.

Very recently the Hellmann-Peynman forces acting on the nuclei in a molecule

have been investigated and they turned out to be very sensitive with respect to a

small deviation in the wave function from the exact Hartree-Pock solution. Kern and

Karplus have shown that even wave functions yielding the same total energy may give

results for these forces which differ considerably, especially for the force acting

on the heavier nucleus. The Hellmann-Feynman force FN, acting on the nucleus N is

defined by the relation:

FN -- ZNe 2 aM_<, (-, 4)
c 0 N k rNk

where k refers to the electrons and a to the nuclei of the system.

It is a necessary condition that the exact Hartree-Fock wave function for

HeH+ must satisfy the relation Fe = = 0 for the equilibrium internuclear distance

and e = I at each internuclear distance. Any difference between these two quanti-He H
ties indicates that one still does not have the exact Hartree-Fock function and more-

over, that not only the force but also the other calculated properties might differ

from their corresponding exact values by the same order of magnitude.

For a linear molecule such as HeH+ only the force component along the inter-

nuclear axis is of importance since all the other components are zero by symmetry.

Pig. 2 represents these forces on the He and H nucleus obtained from the 4 x 2 set and

7 x 5 set where the optimization is carried out at each R value, and the curve for the

7 x 5 set where the exponents have been optimized only at R = 1.455 B.. The force FN

is chosen to be positive if the force points from the nucleus N toward the other

nucleus.

For the force on the p.oton only the curve for the 7 x 5 set optimized at

each internuclear distance was plotted: the two other curves would lie (in the medium

rwige of R values) within about .002 a.u. on either side of the plotted curve, the

7 x 5 nurve (exponents optimized at R e ) above and the 4 x 2 curve below, and would

intersect with the O-line at R - 1.463 B.. But there are fairly sizeable differences

between the three plotted curves for the force on the He-nucleus, although the poten-

tial energy curve obtained from the corresponding wave functions almost coincide.

11C. W. Kern and N. Karplus, J. Chem. Phys. 40, 1374 (1964).
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These facts are consistent with the results Kern and Karplus found in com-

paring several wave functions for the HF molecule. At the equilibrium distance where

the forces should be zero, the proton force differed in the five wave functions under

consideration from +.084 a.u. to -.017 a.u.,1 2 but only by .005 a.u. for the two

wave functions yielding almost the same energy; whereas the difference in the fluorine

force for these two wave functions was .676 a.u., and including the other three wave

functions the values for the F-force varied from .103 to 3.10 a.u..

Since the general appearance of curve A' and B' of Fig. 2 is the same, the

difference between the 4 x 2 and 7 x 5 basis set seems to be reflected mainly in the

He-force which is too high for the smaller set. From this we may conclude that the

4 x 2 set is a good representation for the He- core, which is necessary to give a good

value for the total energy, but it does not account satisfactorily for polarization

effects: that is, too much charge is concentrated around the He-nucleus and there is

a deficiency of charge in the bonding region between the two nuclei. The greater

flexibility of the larger basis set is able to build up a higher density between the

two nuclei and thus reduces the force on the He-nucleus; this shift of charge into the

bonding region is, as we shall learn later from the charge density calculations, the

main difference between the two basis sets.

The shortcoming of a calculation in which a wave function with the orbital

exponents optimized only at the equilibrium distance is used to calculate the whole

potential curve can clearly be seen from the curve B. This curve even predicts values

for the He-force at large internuclear distances where all curves should approach zero.

This behavior can be explained by recalling the fact that the exponents are related to

a special electron distribution at Re, but that the distribution changes at larger R.

In fact the charge cloud is concentrating towards the He-nucleus and the flexibility

in the wave function due to the linear coefficients in the MO expansion alone is not

sufficient to give a proper description of this readjustment. Thus, if the exponents

are held fixed, charge is shifted too far from the He-nucleus and the second term in

the above formula (J:) becomes too small and eventually the first term outweighs the

second.

The condition FHe = FH is satisfied to high accuracy, only by the large basis

set, and only if the exponents are optimized at each internuclear distance. In Fig. 2

the force on the He-nucleus appears to be reflected image of the force on the proton.

121 a.u. of force - 8.2378 x 10-3 dyn.
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However, a more careful consideration shows that the forces are not exactly of equal

magnitude; the difference between the He-force and the H-force is approximately .003

a.u.. This difference is approximately constant over the whole range of the inter-

nuclear distances, which is certainly of importance. The fact that it is not exactly

zero might be somewhat disappointing at first, although this result is superior to the

results found for the HF functions.1 1  On the other hand, for a point of the potential

curve which we had obtained both by carrying out the optimization procedure for the

exponents and by using the interpolated exponents we found the energy differed by only

a few units in the 7th decimal place, yet the difference between the FHe - F I values

was about .0005. Therefore, we feel the difference of .003 to be very close to the

lower limit that we can hope to get with a function such as we are using, at least

over a whole range of internuclear distances.
1 3

spectroscopic
Table 5 lists the/data obtained from the several calculations. The first

and second row contains for comparison the data given in the earlier calculations.
3'4

The values in the 3rd and 4th row and in the 6th and 7th row have been calculated as

described in Herzberg from a polynomial fitted through the different points of the

potential energy curve. In each case we averaged over six calculations using poly-

nomials of 8th, 9th and 10th degree through different combinations of points. The

difference between values obtained in this way from the different basis sets is small,

as we had already expected, since the shape of the corresponding potential energy

curve near the minimum, which is the important part for the calculation of the spec-

troscopic constants, is almost the same. Optimizing the exponents at each R value

decreases the curvature and is reflected in the slightly larger Re - and weXe - values.

The values for the equilibrium internuclear distance given in the 5th and 8th row is

obtained from the virial theorem, which requires the ratio of kinetic energy T and

potential energy V to be -2 at Re. These Re values are interpolated from the E/V

values at R = 1.4, 1.455 and 1.5 B.. The 9th and 10th row contain the equilibrium

'For some R values FHe = FH might be exactly satisfied. This is true for the 7 x 5

set (opt. at 1.455 B.) between R = 1.0 B. and 1.2 B. and between 1.3 B. and 1.4 B.

where the difference FHe - FH changes sign, but we assume this exact equality to be

coincidental. See also the corresponding discussion for Neff+ .

14G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., Princeton

New Jersey, 1950), 2nd ed. pp. 90 ff.
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distance and the force constant derived from the force curve of Fig. 2. The FHe and

FH curve have been approximated by a parabola through the points R = 1.4, 1.455 and

1.5 B.; the first value is derived from the FH curve, the second from the intersection

of both curves.

From all these calculations of the equilibrium distance we may draw the con-

clusion that this value is certainly larger than the values given in the two earlier

calculations although we are not able to give the exact figure for the third decimal

place, which is consistent with the fact that F He - FH is zero only to approximately

3 figures. The dissociation energy listed in the last column of the above table is in

good agreement with the calculated value of Anex and also with the experimental value

listed in the last row, the accuracy of which is not exactly known.
1 5

One remark might be necessary here: the binding energy has been calculated

as the difference between the calculated total molecular energy, which is believed

to be within Hartree-Fock accuracy, and the Hartree-Fock energy of the separated atoms.

Therefore, the deviation of the number given in the above table from the exact value

depends only on the correlation energy in both systems. A difference of 0.001 H. in

the correlation energy, which might occur, would change the calculated binding energy

by about .03 eV.

One of the important properties of a diatomic molecule that can be calculated,

is its dipole moment. Since this depends for an ion on the location of the origin of

the coordinate system, we calculated a related quantity, the center of negative charge.

Table 6 gives the distance of the center of negative charge from the He-nucleus. We

also include the results of the 4 x 2 basis set to show the difference which arises

when such an expectation value is calculated from both basis sets directly and not

determined from energy values. We will come back to this difference in the discussion

of the NeH+ results. All our values differ from those calculated by Anex
4 by approxi-

mately the same amount as did the values for the equilibrium distance. It can be seen

from this table that the values have a maximum near the equilibrium distance and

decrease at larger R values. This means that if the proton is within a distance from

the He-nucleus smaller than Re the charge cloud tends to follow it, but as the distance

between proton and He-nucleus increases from Re the charge cloud moves steadily back

towards the unperturbed position which it would have in the He atom.
1 5 W. Kaul, U. Lauterbach, R. Taubert, Z. Naturforsch. 16a, 624 (1961).
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This behavior of the charge cloud is also reflected in some other expectation

values which have also been calculated; for instance in the expectation value of z
2

-1 2
and to some extent in those of rhe and rHe , where the expectation value of rHe is

the mean distance of the charge cloud from the He-nucleus. The expectation value of

x2 (x-axis perpendicular to the molecular axis through the He-nucleus) which is a measure

for the size of the charge cloud in a plane including the He-nucleus perpendicular to

the molecular axis, increases monotonically with R toward a certain limit. The charge

cloud behavior can also be illustrated by the charge density contours, which we plotted

for several internuclear distances in Fig. 3, a-d. We chose values for the internuclear

separation which correspond to points on the replusive and the attractive part of the

potential energy curve, to the equilibrium distance, and to a point close to the dis-

sociation limit. The solid lines in all 4 figures refer to the same density contours

respectively; additional dashed lines have been included at times to give more detailed

information about the contour in a particular region.

A look at this whole series of figures might give us a very instructive pic-

ture of the way in which the dissociation in such a rare gas hydride ion might occur.

Fig. 4 shows the charge density along the internuclear axis for several R values.

On the whole, we would have expected this shape of the density contours: in

the immediate neighborhood of the He-nucleus they resemble spherical ellipsoids,

slightly polarized and the degree of this polarization depending on the position of

the proton; in the outer region of the molecule they approach ellipses whose eccen-

tricity is smaller at small R values where the dissociation almost occurs; in the

intermediate region a pear shape is evident.

The general appearance is the same regardless which function we use to calcu-

late the electron density. Only a careful study shows that there are differences:

the 4 x 2 set with only two orbitals at the H-nucleus tends to pile up charge around

the proton, consequently there appears in Fig. 4 a small but rather distinct peak at

the position of the proton, whereas the 7 x 5 set distributes the charge more equally

in the bonding region, so that rather a shoulder than a peak appears. This increase

of electron density in the bonding region is partly due to a shift of charge from the

H-nucleus into that region, but mainly to such a shift from the He-nucleus towards the

proton, which is also the reason for the decrease of the He-force mentioned previously.

A consideration of Fig. 3 would suggest that a one-center expansion might

give reasonable results for the total energy; but a basis set of 10 partly optimized

functions gave an energy of only -2.910 H. which was not very encouraging; and since

computational difficulties (degeneracies) arose when going to larger basis sets, this

study has not been carried further.
6

11The extensive calculation by Stuart and Matsen (see Ref. 5) sh9ws indeed, that a

one-center expansion is able to give excellent results for HeHr.
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B. The (NeH)+ Molecule Ion

The calculations for NeH+ were analogous to the calculations for HeH+ and the

results are listed in the same order.

Table 7 presents details about the 11 X 5 x 6 X 2 basis set which we have

used for the NeH+ calculations and shows the energy for the ground state of NeH+

obtained with this function. From the coefficients in this table it may be seen

that the several orbitals which we have added to the atomic set (d and f functions on

the Ne-nucleus and all hydrogen orbitals) are negligible in the 16 MO, but they con-

tribute to all of the other three molecular orbitals.'

Fig. 5 shows the potential energy curve for NeH+ . The dashed curve is the

result if the orbital exponents are optimized only at R = 1.83 B.. The solid curve

results if those exponents which seem to be most sensitive with respect to a variation

in the internuclear distance are optimized at each R value. The optimized C value for

the disNe exponent remains the same when varying the internuclear distance. This was

to be expected considering the fact that its value in the free atom and in the mole-

cule is practically the same. Most sensitive are of course the values of the outer

orbitals, especially of those which have been added to the atomic set. Furthermore,

it is worthwhile to note that among these the orbital exponents in the w symmetry are

more sensitive with respect to a change in the internuclear separation than the cor-

responding orbital exponents in the 6 symmetry. A reoptimization at each R value was

also important for some of the 2Pe exponents; they do not change as much as the

X Ne or 2eH, 2pH or 3dH exponents, but the magnitude of the 2p orbital contribution to

the total energy is quite large. A reoptimization of the 2s exponent was found to have

little influence.

The wave functions for the different points at the potential curve have been

tabulated but are not included here for the same reason as before.

Table 8 lists the numerical data for the potential curves. The values in

brackets have been obtained (as in Table 3) from calculations in which we used inter-

polated values for the exponents.

The general appearance for the potential energy curve for NeH+ is the same as

for HeH+. For large internuclear distances the curve approaches the Hartree-Fock

energy of the separated atoms (the dashed line in Fig. 5). The effect of lowering the

energy at larger distances due to the optimization of the exponents at each R value is
greater t It was for the 7 x 5 set of HeH+ but smaller than for the x 2 set. This
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might lead to the conclusion that the flexibility of the NeH+ basis is better than of

the 4 x 2 set but inferior to that of the 7 × 5 set as we would expect, since the

flexibility is primarily due to the number of basis functions of each symmetry which

were added to the Hartree-Fock atomic set. However, we should be very careful at this

point since we did not optimize all the exponents at each internuclear distance.

The behavior of the force curve in the neighborhood of the equilibrium dis-

tance is similar to the behavior of the corresponding curve of the 4 x 2 set in Fig.

2. The force on the Ne-nucleus is too large, and therefore the difference between the

force on the neon and on the hydrogen nucleus is not zero; at R = 1.83 B. this value

is .028 a.u., only slightly smaller than the corresponding difference for the 4 x 2

basis set of HeH+ which might suggest that the accuracy of this neon function at R e

is only slightly better than that of the smaller HeH+ basis set but much inferior to

the accuracy of the large basis set of HeH+. However, this difference does not remain

constant over the range of the internuclear separations; it decreases with increasing

R values and at R = 2.7 B. it is only .0004 a.u.. This behavior seems to be due to

the combination of two effects which can be seen from Fig. 2 from the dashed and dotted

curve: the general shortcoming representing the electron density accurately in the

bond region and the consequent high force on the He-nucleus (this corresponds to the

dashed line) is partly overcome by the fact that the orbital exponents are not fully

optimized (this is indicated by the dotted curve). The result is an exact equality of

the forces near R = 2.7 B.. This might happen for any wave function at a particular

R value, even if the energy is far off from the correct value.
1 7 Therefore, we have

to be very careful in Judging a wavefunction only with respect to the equality condi-

tion for the forces at one particular point of the potential curve and must remember

that this equality condition is only a necessary condition for a Hartree-Fock solution.

At large values the F Ne curve approaches zero but does not take negative

values. From this we may estimate the error arising from the fact that the optimiza-

tion has not been carried out for all 24 orbital exponents (see Fig. 2). In summariz-

ing all our considerations concerning the accuracy of our NeH+ function we may con-

clude that this function is slightly better at the equilibrium distance and slightly

17The well known situation, where a poor function gives good values for some properties

and gives poorer values when the funiction is improved by an optimization of the

orbital exponents or an expansion o the basis set, might be explained in a similar

way.
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worse for R values farther away, than the 4 X 2 set is for HeH+ (optimized at each R).

The same is consequently also true for the expectation values for a one electron opera-

tor. How much such a value differs from an expectation value calculated with a func-

tion of much higher accuracy might be seen from Table 6. With respect to the energy

this means that we can expect the NeH + potential energy curve to lie compared to the

HeH+ curves approximately at the same point or slightly below the dashed line of

Fig. 1 at the equilibrium distance and at larger R values between the solid and the

dotted curve close to the latter.

Table 9 presents the spectroscopic data for NeH+. The first row contains the

data which Moran and Friedmann1 8 obtained by using Platt's electrostatic model. The

next few rows present the results of our calculations. The main difference between

the next two rows is again the larger wexe value which results from the optimization

at each internuclear distance. The Re value in the 4th row has been calculated by

interpolating between the E/V values at R = 1.8, 1.83 and 1.9 B.. The Re value in

the next to the last row has been determined from a plotted force curve; a correct

interpolation could not be carried out since the available calculated values were not

grouped close enough to the minimum. For the same reason the ke value is missing in

that row. The calculated dissociation energy is in good agreement with the experi-

mental value.
1 5 '1

9

It can be seen from Table 10 that the general behavior of the charge cloud

for NeH+ is the same as for HeH+, and the expectation values of z2 , rNe and rNe

again indicate this behavior. The absolute values for the distance of the center of

negative charge from the Ne-nucleus are smaller.

The general appearance of the total electron distribution in Fig. 6 resembles

that of HeH+. At the equilibrium distance the proton has penetrated the same distance

into the charge cloud in both molecules, and a preliminary study of AH+ showed that

the proton at the equilibrium distance is also just within the .2 contour. This fact

is not surprising if one remembers the success of the Platt model which has recently

been applied to hydride ions and which assumes that the total charge beyond a sphera

of radius Re is the same for all three molecules. Fig. 7. a-d, shows the charge

density maps of the different molecular orbitals, and Fig. 8 the corresponding charge

along the internuclear axis.

lb T. F. Moran, L. Friedmann, J. Chem. Phys. 40, 860 (1964).

T. IF. Moran, L. Friedmann, J. Chem. Phys. 12p 2 4 91 (1963).
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Prom Fig. 7a and Fig. 8, it is clear that the 16 MO is almost unaffected by

the presence of the proton. We came to the same conclusion in considering the expan-

sion coefficients of Table 7. The 7 electron density also is not very perturbed, as

may be seen from Fig. 7d; the contours are slightly asymmetrical with respect to the

x axis (perpendicular to the molecular axis through the Ne-nucleus). Most affected

are the 26 and 36 MO's. The 36 orbital is strongly polarized towards the proton and

almost resembles a 62p function. However, the charge distribution in the immediate

neighborhood of the Ne-nucleus and in the region opposite the hydrogen seems to be

little affected, although there is a small shift of the nodal plane (Fig. 8). On the

other hand, the polarization of the 26 orbital is quite large in the region relatively

close to the Ne-nucleus and in the region opposite the proton. Charge is piled up in

the bond region and decreased on the other side of the Ne-nucleus, which gives rise to

the asymmetric shape of the contour close to the Ne-nucleus. This asymmetry increases

at smaller internuclear separations which means that in Fig. 7b more of these "moon

shape" contours will appear.

From these considerations it appears ttat both the 26 and 36 MO's play a role

in the formation of the bond. The magnitude of their contribution varies in the dif-

ferent areas of the bonding region, the 26 being more important near the Neon and the

36 becoming more important near the Hydrogen nucleus.
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TABLE 1. THE 4 x 2 HARTREE-FOCK-ROOTHAAN WAVEFUNCTION FOR THE GROUND STATE

OF HeH+ (la2,1;+) AND ENERGY QUANTITIES AT R = 1.455 B.a

Basis Functions Clo,k
xk

ClSHe ( = 1.83692) .91271

a2SHe (3.18073) -.04743

a2S~e (1.60271) -.03009

a2PHe (2.26480) .03513

0lN (1.51431) .23680

a2PH (I. 91503) .04154

IO -1.63751

E -2.932325

aClc, k are coefficients of normalized AO's Xk, C orbital exponents; total

energy E and orbital energy CI1 in Hartree, 1 H = 27.2097 eV, internuclear

distance R in Bohr, 1 B = 0.52917 x 10-8 cm.

TABLE 2. THE 7 x 5 HARTREE-FOCK-ROOTHAAN WAVEFUNCTIONS FOR THE GROUND STATE

OF Hel+ (la2,1Z+) AND ENERGY QUANTITIES AT R 1.455 B.'

Basis Functions Clc,k

k

alSHe (C = 1.37643) 1.19873

elske (3.87107) .04345

c2SHe (1.554335) -.146038

a2PHe (2.64576) .06404

O2PHe (3.24082) -.03015

o3dHe (2.54147) .00593
O~rHe (3.73526) .00119
olsH (i.00949) .40973

o2sH (1.18036) -.21100

o2s (2.56229) .00692

o2 pH (1.79089) .04454

o3dH (2.41228) .00642

S1'o -1.63748
3 -2.933126

Notatlon as in Table 1.
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TABLE 3. THE TOTAL ENERGY OF HeH+(16 2,1Z+) AS A FUNCTION

OF INTERNUCLEAR SEPARATION

R (B.) Energy (H.)

4 x 2 Basis Seta 7 x 5 Basis Set a

A A' B B'

1.0 -2.857919 -2.860478 -2.860566 -2.861036

1.2 -2.916006 -2.916651 -2.917221 -2.917390

1.3 -2.927219 -2.927431 -2.928148 -2.928206

1.4 -2.931777 -2.931800 -2.932588 -2.932594

1.455 -2.932525 -2.932325 -2.933126 -2.933126

1.5 -2.932010 -2.932026 -2.932825 -2.932830

1.6 -2.929500 -2.929644 -2.930403 -2.930450

1.7 -2.925336 -2.925693 -2.926376 -2.926500

1.8 -2.920236 -2.920883 -2.921462 -2.921683

2.0 -2.909106 -2.910421 -2.910760 -2.911205

2.2 -2.898462 -2.900422 -2.900535 -2.901201

2.5 -2.885294 -2.887848 -(2.888782)

2.8 -2.875905 -2.879129 -2.878680 -2.879782

3.15 -2.868938 -2.871666 -(2.872847)

3.5 -2.864957 -2.868262 -2.867442 -2.868619

4.0 -2.8622j6 -2.864273 -(2.865341)

4.5 -2.861094 -2.863593 p2.862837 -2.863752

aColumns A and B, for the 4 X 2 and 7 X 5 set respectively, were obtained

using the orbital exponents optimized only at R = 1.455 Bohr. Columns A'

and B', for the 4 x 2 and 7 X 5 set respectively, were obtained using

optimal orbital exponents at each R value cited or interpolated values

(in parenthesis).

TABLE 4. COMPARISON OF THE TOTAL ENERGY FOR HeH
+ FROM THE CALCULATION

OF ANEX
4 AND THIS CALCULATION.a

R 1.0 1.4 1.8 2.2

E (Anex) -2.90160 -2.97424 -2.96471 .2.94035

E (This calculation) -2.86104 -2.93259 -2.92168 -2.90120

Difference .04056 .04165 .04103 .03915

aEnergy values in H., values of the iuternuclear reparation in B.
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TABLE 6. DISTANCE z OF THE CENTER OF NEGATIVE CHARGE FROM THE

He-NUCLEUS FOR DIFFERENT INTERNUCLEAR DISTANCES R.

R(Bohr) z(Bohr)

4X2 Set 7X5 Set Anexa

1.0 .2214 .2202 .22554

1.2 .2326 .2315

1.3 .2348 .2337

1.4 .2348 .2338 .24624

1.455 .2340 .2331

1.5 .2329 .2320

1.6 .2293 .2286

1.7 .2242 .2236

1.8 2179 .2174 .23427

2.0 .2022 .2019

2.2 .1838 .1837 .20027

2.8 .1254 .1259

3.5 .0730 .0743

4.5 .0368 .0377

aSee Ref. 3. Also note that the values of Anex are corrected values,

not the values given originally in this paper. (B. G. Anex, private I
communication.) Exponents optimized at each R-value.
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TABLE 7. THE 11 x 5 x 6 x 2 HARTREE-FOCK-ROOTHAAN WAVE FUNCTIONS FOR THE

GROUND STATE OF NeH+(la 2 2ci2 30 ,11+) AND ENERGY QUANTITIES AT

R = 1.83 B.a

Basis Functions k c

Xk01l, c~ok 3a,k 1lk

lSNe (C = 8.91020) .94299 -.28499 .04349

ClS'e 15.25118 .08902 .00826 -.00139

o2sNe 2.35322 -.00081 .48004 -.08490

0
2 ske 3.67914 .00394 •58099 -.10651

a3SNe 11.15634 -.03390 -.02502 .00424

a2PNe 1.64063 -.00002 .o1418 .16696

O2Pa e 2.51232 -.00046 .04777 .54621

c2-" 4.88404 .00072 .01214 .25216Ne

a2p"e 11.15553 .00030 .00096 .00743
Ne

3dNe 2.48734 -.00016 .01169 03695

a4fNe 3.14362 -.00003 .00320 .00824

clsH 1.73096 .00036 -.10150 .13756

als, 2.12470 -.00017 .12141 .02273

a2sH 2.17392 .00019 .04441 .04288

a2pH 2.32609 .00018 .01563 .02087

G3dH 3.10413 .00003 .00341 .00269

r2pNe 1.81230 .34210

w2pie 2.77094 .46612

2Pje 4. 92893 .25683

Tr2Pe' 10.61784 .00939

I 2.39912 .02098

! fNe 3.22623 .00o492

,rp H  1.79232 .01929

Tr3dH 2.54963 .00482

ei(H.) -33.3)d81 -2.49750 -1.45857 -1.38468

E (H.) -128.62836

aci,k are coefficients of normalized AO's Xk, Corbital exponents, ei orbital

energies and E the total energy.
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TABLE 8. THE TOTAL ENERGY OF NeH+(lo22a2302 lit4,z+)

AS A FUNCTION OF INTERNUCLEAR SEPARATION.a

R (B.) Energy (H.)

A A'

1.35 -128.53871 -128.53942

1.5 -128.59536 (-128.59568)

1.6 -128.61454 -128.61469

1.7 -128.42663 (-128.62448)

1.8 -128.62812 -128.62812

1.83 -128.62836 -128.62836

1.9 -128.62773 -128.62773

2.0 -128.62472 (-128.62479)

2.1 -128.62010 (-128.62026)

2.2 -128.61457 -128.61492

2.4 -128.60260 -128.60330

2.7 -128.58579 -128.58728

3.0 -128.57248 (-128.57470)

3.5 -128.55826 -128.56128

4.o -128.55110 -128.55418

4.5 -128.54776 -128.55089

aCalculation A employs orbital exponents optimized only

at R = 1.83 Bohr. Calculation A' employs orbital ex-

ponents optimized at each R value except those in

parenthesis which interpolated orbital exponents were

used.
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Pig. 1. Potential curve for HeH+(X +) and Hartree-Foek energy of the separated

atoms (He + H+).

A, 4 x 2 basis set, optimized at R = 1.455 Bohr.

--------- B, 7 x 5 basis set, optimized at R - 1.455 Bohr.

B', 7 x 5 basis set, optimized at each R.
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Fig. 2. Force on the He-nucleus (He)and on the H-nucleus (F)at different

internuclear distances.

A', 4 x 2 basis set, optimized at each R.

------B, 7 x 5 basis set, optimized at R - 1.1455 Bohr.

B1, 7 x 5 basis set, optimized at each R.
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I02

He H
Fig. 3a. Charge density contours f'or HeH+ for R 1.0 Bohr. Calculated using

the 7 x 5 basis set with exponents optimized at R 1.0 Bohr.

He H
Fig. 3b. Charge density contours for Hog*+ for R - 1.455 Buhr. Calculated

using the 7 x 5 basis set with exponents optimized at Rt - 455 Bohr.



Fig. 3d. Charge density contours for HeH+ for R 2 .5 Bohr. Calcualated using

the 7' X 5 basis set with exponents optimized at R 2.5 Bohr.
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Fig. 4. Charge density for HeH+ along the internuclear axis. Calculated

using the 7 x 5 basis set with exponents optimized at each R.

R 1.0 Bohr.

R = 1.455 Bohr.

R = 3.5 Bohr.

W~4M6

2D 3D 40 .C.
INTERNUC " Dt1ANC.

Figure 5: Potential curve for NoH+(xlZ+) and Hartree-Fock

energy of the separated atoms (Ne + I+ ).

A, basis set optimized at R - 1.83 Bohr.

A', basis set aptiaulsed at each R.
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Figure 6: Charge density contours for NeH+, R 1 .83 Bohr.
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Ne H
Figure 7a: Charge density contours for the 10 NO of NeH +

(R 1 .83 Bohr).

Ne
Figure 7b: Charge density contours tor the 2d no or et

(RI 1.83 Bohr).
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Ne H
Figure 7c: Charge density contours for the 36 MO of NeHi+

(R = 1.83 Bohr).

L2

Figure 7d. Charge density contours for the l7r 140 of Nel+

(R - 1.83 Bohr).
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Rare-Gas and Hydrogen Molecule Electronic States, Noncrossing Rule,
and Recombination of Electrons with Rare-Gas and Hydrogen Ions*

RoBENR S. MULLIKEN
Laboratory of Molecular Structure and Spectra, Department of Physics,

University of Chicago, Chicago, Illinois

(Received 23 June 1964)

Recent experimental work on helium jets has indicated that excited atoms result usually from collisional.
radiative electron capture by atom ions (A++2c -* A*+e; etc.) rather than by dissociative recombination
by molecule ions (An++e -* A*+A), while for the heavier rare gases, the latter process is apparently rela-
tively important. It is shown in the present paper that the theoretically expected forms of the potential curves
of excited He, and other rare-gas molecules make dissociative recombination improbable for He2+ but more
probable for the other rare-gas diatomic ions. Available spectroscopic data and theoretical considerations
make it fairly sure that many of the familiar excited states of He2 have high maxima in their potential curves,
but that no pure repulsion curves, except the one for two normal He atoms, exist below the energy of He+
+He. Besides the stable states with stable He:+ core (la.21ro, Z,+) plus a Rydberg electron, there must be
others with a core (lles,,+) which per se is unstable but which on addition of an electron in a sufficiently
strongly bound Rydberg orbital is stable; consideration of these states makes possible a reasonable explana-
tion of the Hornbeck-Molnar effect in helium. Statements analogous to those about potential curves and
electron recombination in helium are applicable also to a large extent for hydrogen.

OLLOWING Bates, ,-2 it was rather generally ac- curves are such as to make dissociative recombination of
cepted' that the relatively rapid recombination electrons [Eq. (1)] improbable for He2 + except for

rate of electrons into excited states of atomic rare-gas higher vibrational states but, tentatively, entirely likely
ions in discharge afterglows can be explained only by [though not to the exclusion of Eq. (2)] for the other
assuming that the major responsible process is "dis- rare-gas diatomic ions.
sociative recombination": In 1932, I published a potential-curve diagram7 for

He. which included many repulsive states such that
A2++e-- A*+A. (1) electron capture into them by Hes+ would have resulted

Recently, however, the general usefulness of this ex- in dissociative electron recombination. However, the

planation has been seriously questioned, and a "col- existence of such states contradicted the "noncrossing
lisional-radiative" mechanism, 4  rule" for potential curves of any one electronic species.

In 1932 confidence in the noncrossing rule was much
A++2e--,l**+e; A* A*+hv; etc. (2) less secure than now, and there was evidence which

has been found to explain many results previously in- seemed to indicate its violation for certain states of

terpreted by Eq. (1). Experimental work on helium He2. Namely, near their minima the potential curves of

jets' indicates that mechanism (2) and not (1) is domi- the electronic states A3du, I_., A3d-, 1H, and A3dS,
nant in these for the recombination of electrons with 'A., where the He2+ core A has the normal-state con-

helium ions.' For neon,' however, there seems to be figuration 147 1, and the excited electron is in a

good evidence for the importance of Eq. (1). As will Rydberg MO (molecular orbital), all lie close together

now be shown, theoretical considerations on the forms with energies which for v,=0 are above that of two

of the potential curves of the excited states of He: and normal He atoms by amounts I-D+-X eV, where

of other rare-gas diatomic molecules indicate that these X= 1.574, 1.550, and 1.491 for 3da, 3dr, and 3da, re-
spectively. (I= ionization energy of He atom, v=vi-

This work was assisted by the U. S. Office of Naval Research, brational quantum number, D + - dissociation energy
Physics Branch under Contract Nonr-2121 (01).

ID. R. Bates, Phys. Rev. 77, 718 (1950). of He
+ into He++He.) Now if the 3d, E. and

I D. R. Bates, Phis. Rev. 78, 492 (1950). 3dr, 31, states dissociate in the manner expected from
I For example, W. A. Rogers and M. A. Biondi, Phys. Rev. simple linear-combination-of-atomic-orbitals (LCAO)

134, A1215 (1964), on helium; T. R. Connor and M. Biondi, Bull. MO theory and the noncrossing rule, they would both
Am. Phys. Soc. 9, 184 (1964), on neon.
4 D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. dissociate to He(1s2)+He(1s2P, 3P), with energy I-

Roy. Soc. (London) A267, 297 (1962)- AV% 15 (1962); N. 3.623 eV,8 but the A3d, "A. state necessarily goes to
D'Angdo, Phys. Rev. 121, 505 (1961)- k Byron R. C. Stabler,
and P. 1. Borts, Phys. Rev. Letters 8, 376 (1962).

' C. B. Collins and W. W. Robertson, J. Chem. Phys. 40, 2202, 7 R. S. Mulliken, Rev. Mod. Phys. 4, 1 (1932), Fig. 49, p. 61. In
2208 (1964); F. E. Niles and W. W. Robertson, ibid. 40, 2909 this figure, D+=2.6 eV was assumed for Hes+.

(1964). - This ignores a loinor complication which does not alter the
' Further, experimental results obtained by E. E. Ferguson, F. C. essential conclusioni reached here. Nam ly, the potential curve of

Fehsenfeld, and A. L. Schmeltekopf at the National Bureau of theaA3s, it state, in order to"disoc"te tolssls3s-"3S-asit

Standards in Boulder show that the molecular and atomic emis- tends to do, would have to cross that of the A3de, Z+. state (see
sions in helium afterglows have the same dependence on electron Fig. 1). But the interaction matrix element is probably large

temperature in the millimeter pressure range, which has led them enough near the prospective crossing point so that the A3s, I Z .

to believe that dissociative recombination is not a significant proc- shortcuts and actually dissociates into ls'+ls2pw, IP, leaving the
ess under the conditions where it has generally been thought to A3de, 'l+. to dissociate into ls'+ls3s, IS. Analogous statements
ocour (private communication from Dr. Ferguson). hold for 4pe, sZ+, and 4fa, 3Z+, whose curves are shown in Fig. 1.
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He(ls')+He(ls3d, ID), at an energy 1- 1.513 eV. Now
if, for example, D+ = 2.1 eV,' the energies of the v= 0
level of the A3do, E+. and A3dr, IH. states would be S(1%16!, ' Z)
almost equal to that of the separate atoms He(lss)

+He(ls2p, p): see Fig. 1. This expectation seemed in
1932 (Ref. 7, footnote 147) to be inconsistent with the I0,2s

close similarity of the potential curves of the two
Rydberg states mentioned to that of the A 3d, 'A. Is4s3s
state, which pointed to the conclusion that all three -.

states dissociate alike to He(1s1)+He(ls3d, ID). The > .00
3E+ and 'II curves would then have to violate the I 5 *P sP
noncrossing rule and cross other repulsion curves of the -2 J ,,3S
same species (see Fig. 49 of Ref. 7). Electron capture WD

into such repulsion curves could give rise to dissociative ,e,
recombination. Z -3 3 n 1s2

Careful reconsideration has convinced me that the .1. ,y
reason for the close proximity and similarity of the 4 42%",'-
potential curves of the three Rydberg states mentioned
is that at the equilibrium distance R, the Rydberg MO ,,S
is still nearly a united-atom 3d atomic orbital (AO). -5 3P*,3r
This conviction has been in fact a key clue to a better
understanding of diatomic Rydberg states in general."0

The anomaly discussed above is resolved if the 3dir, -6
111. and 3da, $E+ curves at first nearly follow the 3d6,
'A. curve (which is very similar to the A curve of He2+),
but as R increases, fall below the latter, reach a maxi- - _J
mum or hump of as much as 0.5 eV or possibly even 1 2 3 4 5 0

1 eV height, and from there' go down to their dissoci- R ()
ation asymptotes as R increases. As a matter of fact, FiG. 1. Potential curves of Hes+ and of some triplet states of
there are indications pointing toward such behavior. He,. For the ten lower states shown, which have A core, the curve
Namely, R. increases slightly and the vibration fre- shapes near their minima and their depths relative to the A curve

and the energy fall slightly as one proceeds of He, + are based on experimental data, except for 4pw and 4fo.
quency n eThe absolute depths of all these curves are based on an assumed
from 3d to 3dir to 3Mr. These deviations are just in the value (Ref. 9) of 2.1 eV for the dissociation energy D+ of the v-0
direction expected if there is already a small tendency level of Hes+. The forms of the B-core curves, and of the A-core

curves at larger R values, have no more than qualitative justifi-
away from the united-atom AO toward the respective cation. Circles, for example where A3s intersects A3d, and where
LCAO forms 6,3d, r,2p, and a,2p (that is, 3d8.+3dbb, A4s intersects B 3pu (twice), indicate crossings which, although
2pr.-2pwrs, and 2P.+2-o) which the MO's should not so shown, skhodd be avoided according to the noncrossingrule (see Ref. 8, and text). For every triplet state of He, a corre-
tend to assume as R increases, on the way toward sponding singlet state exists, but to avoid confusion these are
respective dissociation' to Is'+ Is3d, 3D or ls2pr, P omitted in Fig. 1.
or ls2pw, 'P.

In general, any Rydberg state which at R. is well moted x MO's (that is, y= x and x -- x+x) probably
described as 1o, , la. x must undergo two kinds of have obligatory humps," unless it turns out that D+ is
changes as R -* on; (1) the x MO goes over to an LCAO much larger than 2.1 eV.9-1s,13 All the foregoing state-
form y+y or y-y; (2) the wave function goes over UMeaning a hum which is necessa if a tential curve Whichtoar .M ear a upwihi e ry Mf ap ted uv hc
toward lo,1,.(y.4-y)+a,l.,'(y:Fy), with X - 1 as is Hei+-like near . because the Rydber. W is united-atom-like
R--* - o. The la, and Ir. MO's have the respective is to connect smoothly with the proper dissociation products indi-
forms a'ls and o.Is, that is, ls+ Is and Is- Is. For cated by LCAO theory and the noncrossing rule. The occurrence of

=1weattain the covalent Heitler-London state sml sonobligatory humps is also bl, as is suggested by
I we ttnh c e el-no s theoretical cakiulatioas on the A 2, &-=and%'ZtstatesbyR. A.

He+He*(lsy), while for X = -1 we have the ion-pair Buc anghmad A. W n Prcw Roy. Soe. (= ,)A214
s (19u) , and by G. H. Brnman, S. 1. Brient, and F. A. Matsenstate He++He-(lsy) or, since He-(lsy) is unstable, Phy.s Rev. 132, 307 (19630) for the 2 +, state, and supported

just He++He+e. All states except those with unpro- by some experimental indications for the '2 + state, and by
apparently conclusive spectroscopic evidence [J. L. Nickerson,
Phys. Rev. 47, 707 (1935); Y. Tanaka and K. Yoshino, J. Chem.

' A thoroughly reliable value of D+ is not yet available (Ref. 12); Phys. 39, 3061 (1963)] for the I X+. state.
however, experimental data of E. A. Mason and J. T. Vanderslice "Intensive new studies of the Het spectrum by M. L. Ginter
J Chm. Phys. 29, 361 (1958), are in good agreement with Y +  in this laboratory may throw light on this question; papers on
-2.16 eV, while the best available theoretical calculation, by the A 2s and .43pw singlet and triplet states will be published soon.
P. C. Reagan,J. C. Browne, and F. A. Matsen, 3. Am. Chem. Soc. "An inspection of the data on the Rydberg states of H2, where84,2650 (1962), after sutatn . Vfrzr-on nry fH hv biao y hmp(eras1Vinhgt;bute
gives D 2a04 e subtracting 0.1 eV for zero-point energy, D+ -2.648 eV, makes it fairly certain that the 3du and 3dv states

give DO ) .04eV.of Hs have obligatory humps (perhaps 1 eV in height); but theMSee R. S. Mulliken, J. Am. Chem. Soc. 86, 3183 (1964) for 3p, AZ. state probably has no hump. Further Ht should have
parts I-V; parts VI and VII to be published later. RyJberg states iith B cor (Le., h,." 2 - Ze) with character-
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ments apply equally well to excited singlet as to corre- core. Further, the B x states should all tend to dissociate
sponding triplet states, to (virtual) excited He- plus He+ , hence actually, since

Thus if the Rydberg MO is unpromoted (for example, excited He- is unstable, to He plus electron plus He+.
2s, which tends to take on the LCAO form a,2s as R Plausible guesses for the forms of two such curves (for
increases, so that dissociation is to Is' plus ls2s; or the triplet states with x= 2s and 3pv) are shown in
2pr, which tends toward r,.2p and dissociates to Fig. 1.
ls'+ ls2p; or 3d5, as discussed above), a potential curve It is seen from Fig. I that a curve like that of A4s,
with no obligatory hump is expected. But if it is pro- s (as well as higher and perhaps also some lower
moted (e.g., 3pv, which tends to u,.2s, so that a A3ps', 3E+. curves") tends to intersect the B3po curve at two
3Y+, and 'E+, should dissociate to ls'-+ls2s, IS and points. Validity of the noncrossing rule would require
IS, respectively; or 3da, or 3dT, as discussed above), a that these intersections should be avoided, and new
hump is expected if D+ is near 2.1 eV. However, for curves should result. However, if two atoms are moving
Rydberg MO's with n>3 in united-atom description, fast enough toward each other on a potential curve
except 4fa, atomic dissociation products with i > 3 for which crosses another curve of the same electronic
the excited atoms are required, and no more than small species, the atoms may with high probability remain
obligatory humps are expected. (For A4fa, IF+, and on the first curve if the electronic interaction matrix
IF+,, larger obligatory humps may beexpected.') Figure element is small enough. The required conditions may
1 shows schematically how some of the lower triplet- well be fulfilled at the outer of the two intersections of
state potential curves might look, with humps drawn the A4s with the B3por curve in Fig. 1, but then at the
in a plausible way including a small nonobligatory inner intersection, the much larger matrix element may
hump1 in the A 2s, E+, state. [Note added in proof, suffice to produce an avoided crossing, hence for the
Recent theoretical calculations by Brownel' confirm approaching atoms a change-over from the A4s to the
the conclusions reached here on the existence of obliga- B3pa, sl+. curve. Then when the latter crosses curve
tory humps in the A3dr, 1I, and III, states of He,, and A of the normal state of the ion (see Fig. 1), a radiation-
also on those predicted" for the analogous lo,3dr, '1. less transition B3p, -, -A*+e is not unlikely.
and 'I. states of H2. Browne has made variational Here A* means a vibrating state of the He2+ ion.
calculations using mixed is2pw and Is3dr, plus Is", The foregoing discussion, although speculative as to
Heitler-London states for He2, and mixed 2pr and 3dir, quantitative aspects, should be qualitatively correct.
plus Is, for H2, and obtains humps of heights from 0.4 It furnishes a reasonable explanation of the Hornbeck-
to 0.6 eV. Calculations'" by Browne, on the 2s, E-'st Molnar (HM) effect," ,1' whereby He,+ ions are formed
and 3do, _+, and 'E+, states of He2 also agree with the by reactions of the type
conclusions reached here.]

On the basis of the preceding considerations, there He(ls')-He*(lsy)-- Hei+e. (3)
seems to be no reasonable doubt that, on the one hand, The HM effect occurs only for He* states within I or
all excited states of He2 of the type A x, IX or IX, where 2 eV of ionization; that is, it does not occur except when
x is an excited (here Rydberg) MO, have potential y is a Rydberg AO with n, 3 or perhaps (there is con-
curves with stable minima supporting at least several siderable experimental uncertainty" as to the exact
vibrational levels, and that, on the other hand, if we limit) with n >4. The experimental evidence suggests
consider the potential curves for the approach of a that the effect becomes increasingly strong for higher
normal atom Is' and an excited atom Is y, 3Y or 'Y, Is. That it should not begin before us=3 or 4 is in har-
al of these correlate, probably very often over a hump, mony with the discussion of B x potential curves given
with stable excited molecular states of the type A x, above.1ib Although the HM mechanism for the forma-
IX or IX. tion of Hest is important at low pressures (perhaps

One should now consider Rydberg states of the type under 0.1 mm Hg), three-body mechanisms become
B x, IX and IX, where the B core is le, i6,, I'+,, cor- dominant at higher prew-.es.'
responding to the repulsive potential curve of He2+ (see In view of the existence of the HM effect, its inverse,
Fig. 1). Assuming the term values for any Rydberg which would be a dissociative recombination, should
MO x in a B x state to be roughly the same at smaU R also occur. However, accorling to the peeceding dis-
Wnes as for a corresponding A i state, one concludes cussion the HM effect should lead only to s i He,+
unavoidably that the potential curves of the lowest molecules, with more vibration the higher Is is for the
B x states, at least for 2s, 2pr, and 3pv, must have
stable minima which lie well below the energy of normal H Depending on the actual form of the B 3p. curves, which can
Het plus He in spite of the repulsive character of the be estimated only roughly, and depending also on what is the

true value of D*.
J. A. Hornbeck and J. P. Molnar, Phys. Rev. 84,621 (1951).

istics similar to those of He,. Also, the formation of excited atoms 'J. S. Daler, J. L. Franklin, M. S. B. Munson, and F. H.
by coliional-radiative electron capture by H+ should predominate Field,J. Chem. Phys. 36, 3332 (1962).
over dissciative recombination by H,+ in much the Same way 14, u ddd s inof. R. K. Curran, J. Chem. Phys 38 2974
as for helium. (1963), has shown that the effect occurs very weakly at ;-A with

bJ,. C. Browne (private communication). i ) 1, much mre strongly at a,-4, ad still more strongly at u-5.
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y AO in Eq. (3). Hence, only vibrating Hest molecules observed phenomena may be explained by some sort
should be capable of dissociative recombination by in- of dissociation of the 4pa, IF_+, state into He(ls')
verse HM processes. It is not evident whether or not +He*(1s,2pSP).I This may be energetkically possible for
these would occur at a rate which (for vibrating Hes+) 4pv, IF+,, still more so for 4fo', E+, and other states
would compete seriously with collisional-radiative elec- (see Fig. 1), and perhaps could occur through (collision-
tron capture. There exists also another possibility of induced?) predissociation. Direct dissociation via a re-
dissociative recombination, but again only for vibrating pulsive curve seems to be ruled out by Fig. 1. A need
He2+ ions. Namely, for ions with high vibrational ampli- for further work is indicated.]
tude, electron capture into the vibrational continuum The theoretical reasoning on potential curves which
at or above the top of the hump of an A x state having leads to the conclusion that dissociative recombination
an obligatory hump in its potential curve could occur of electrons should, as is observed, be unimportant in
with considerable probability, helium gas if the vibrational excitation of He2+ ions is

Thus it appears that dissociative recombination to low, is not applicable to the other rare gases, because
give He* may be able to compete seriously with colli- of the more complicated outer shells and excited states
sional-radiative He* formation under conditions where of their atoms. In fact, plausible tentative potential
He,+ ions in high vibrational levels are abundant, but curves drawn some time ago for the Xe2 molecule but
that for He, + ions which are in their low or lowest states not yet published 8 indicate that Eq. (1) may well
of vibration, electron recombination should be almost compete with or under suitable conditions predominate
entirely nondissociative. In this connection it is of over Eq. (2) in the rare gases other than helium. Instead
interest that the observed band spectra of He2 hitherto of just one attractive T'_+ and one repulsive 2F+, as in
reported in the literature, obtained usually in a mildly He2+, there are for all the other rare-gas molecule ions
condensed discharge at 20 mm pressure, more or less, four states 2'., '11w, + ,, and IF+o (or six if one counts
involve mainly v= 0. Bands with v= I are in general substates 2HI/, and IH1/1 separately) derived from the
much weaker, and in only one case was a v= 2 level seen. normal state of the atomic ion (1P, with substates 2P312

However, Ginter by a very thorough search for weaker and 2P/2) plus the neutral atom. Of these states, prob-
bands has recently found states with v as high as 5.12 ably only the lowest, the 2E+. (analogous to the 2E+
Since the main process by which band-emitting He2* of He,+) is attractive. By the attachment of an electron
molecules are formed is probably' from He2+ ions in a in a Rydberg MO to any of these states of the molecule
manner analogous to Eq. (2), and since in view of the ion, various molecular Rydberg states are obtained.
Franck-Condon principle (taken in connection with the The resulting potential curve diagram is extremely
fact that all the Ax potential curves have R. values very complicated. Many curves tend to cross but the non-
similar to that of He,+) v should in most cases remain crossing rule, here especially potent because of strong
unchanged during electron capture, the strong pre- spin-orbit couplings, should often or usually prevent
dominance of ,= 0 states in the observed spectra sug- this for states of any one J,j-like or case c species. It is
gests that most He,+ ions under the usual conditions fairly sure that many of the resulting potential curves
where He, bands are observed are also in the level v- 0.17 are repulsive, thus permitting dissociative capture of

[Note added in proof. A new paper by Collins and electrons by molecule-ions.
Robertson'7' reports that in a helium afterglow at suffi- Further details on the Rydberg states of He2 will be
ciently high pressures collisional-radiative formation of given in Parts VI-VII of Ref. 10, and, it is hoped, on
ls2p, $P helium atoms from He+ ions is increasingly those of heavier rare gases in a later paper. My interest
supplemented by a process which they conclude is one in the electron recombination problem was stimulated
of "collisional-radiative recombination of He,+ into one by discussion with Dr. E. E. Ferguson of some of the
or more molecular states dissociating into one of the 2t latter's experimental results on helium jets, and I am,
atomic states," yet is not direct dissociative recombina- further, much indebted to Dr. Ferguson for valuable
tion in the usual sense. The authors suggest that the criticisms and suggestions.

"But possibly dissociative recombination could be wholly re- 18 Referred to by 0. Schnepp and K. Dressler, J. Chem. Phys. S
spoasible for the observed scarcity of molecules with t>0 in the 33, 49 (1960), and by other writers. I hope that an understanding
band spectra. In my opinion, this seems unlikely, of the nature of potential curves of diatomic molecular Rydberg

1 C. B. Collins and M. M. Robertson, J. Chem. Phys. (to be states gained in recent studies (Ref. 10) will reduce the uacertain-published). ties involved so that better estimated curves for Xes can be drawn.
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Octopole Moment of Methane*
Jon J. SINAI

Laboratory of Molecular Structure and Spectra, Departmet of Physics, Univrsity of Chicago, Chicago, Illinois

(Received 24 February 1964)

The octopole moment of methane is calculated using three different LCAO-MO-SCF wavefunctions.
The numerical method of calculation is illustrated. Results are compared with the experimental value of
James and Keenan, as well as the theoretically computed value. of Turner et at. who used the one-center-
expansion-method wavefunction of Saturno and Parr. A brief discussion of these different wavefunctions and
the octopole moments obtained from them is given.

FOR a system of electrons represented by a single charge density given by Eq. (1). In atomic units,
determinant wavefunction constructed from prod-

ucts of orthornormal functions, the total electronic 10 (

charge density is, in atomic units, i-I - ,

(r) = - " , (r) [. (1) The situation of the nuclei with respect to the coordi-

i- nate system used is such that the nuclei are located at

Here the 4, (r)'s are the orthonormal functions, and C(0, 0, 0),
the summation extends over all electrons of the sys-
tem. If the total charge distribution of the system, Hl(-a, a, a),
including any nuclei possesses tetrahedral symmetry,
it can be expanded simply in terms of tetrahedral *H,(a, -a, a),
harmonics. The different terms in such an expansion
can be identified as the components of a multipole H3(a, a, -a),
charge distribution, and under certain conditions, mul- H4(-a, -a, -a),
tipole moments of this distribution can be defined.
This idea has been carried through and discussed in
detail by James and Keenan.' where 2a is the side of a cube centered on the carbon

Since the electronic wavefunction for the equilib- nucleus.
rium configuration of the ground state of methane has Then by Eqs. (3.2) and (3.8) of James and Keenan,
tetrahedral symmetry, the total electronic charge den-
sity also has this symmetry, and an expression for the p,,(r) = (dipr(r) T.o, (3)
octopole moment of methane can be obtained from
the treatment of James and Keenan.

The total charge distribution for methane is taken where the T.A are the normalized surface harmonics

to be the charges of the nuclei plus the total electronic (tetrahedral harmonics) of degree n and symmetry
type A, and the p.j(r) are the expansion coefficients.

sResearch reported in this publication was supported by By Eq. (3.10) of Ref. 1, one has for the 2- multipole

Advanced Reseirch Projects Agency through the U.S. Army moment
Research Office (Durham), under Contract No. DA-1l-022-
ORD-3119, and by a grant from the National Science Foundation,
NSF GP 28 Research. 1,(4/2n-l) dv(r)rT,. (4)

'H. M. Jamaes and T. A. Keenan, J. Chem. Pys. 31,12 (1959).
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By Eq. (3.9) of Ref. 1, this becomes for n = 3, nucleus and a hydrogen nucleus. The first region con-

4= 105 stitutes the "interior" of the molecule. The cutoff is
-dvxyspr(r) (5) chosen at r= RCH because the charge density "peaks"

at the hydrogen nuclei. The integration over the sec-

ond region is expected to pick up the remaining con-
= (15)iqjxyiz+(15)'Idvp(r)xyz (6) tribution to the octopole moment. The last region is

4-1f expected to yield little if anything, and this integration
is intended mainly to show convergence of the calcula-

26.311+ (15) i/dvp(r)xyz. (7) tion with respect to the r integration.
The integration over all space has now been reduced

The electronic contribution to the octopole moment is to a set of six integrals over a limited volume of space.
given by the integral The advantage here is that a smaller number of inte-

gration (grid) points can be used in the calculation
I3.= (15) Jdvxyzp(r) (8) which results in a significant saving in machine time.

Thus we have for the electronic contribution to the
(4 octopole moment:

-- 2(15) Jdvxyz±f. I 0i(r) 2. (9) rmn/4 e rCH
f 41=-4(15e)i f doj Od f drF(4)

The summation over all the molecular orbitals reduces o o0 o
to a sum over the distinct orbitals because methane r/4 - r
is a closed-shell system. The calculation was performed + f dOf dJo drF(r4)
using spherical polar coordinates centered on the car- 0 0
bon nucleus. In this system we have +f/4 d OH+ .I

Ia -f-- d~J Of~ dr r- sin20~ sinVt sin2o 0 0Jl
0 0 0 + f ' / 4 C H + O 4

X:L Ij,(r) 12. (to) + J.cH

r,/4 5CH4+16 4 i
This triple integral was evaluated numerically using +1 d bI drJdOF(ro)
Gauss' method of approximate quadrature. The reason 00 eau- 0
for this particular choice is developed in the ensuing r/4 rCn+"
discussion. Consideration of the symmetry properties +f dOf dr d#F (ro) , (11)
of the integrand discloses that the integration over the 0 cRc9+8 eJ.
angular variable - can be reduced, rtsulting in a some- where
what more tractable numerical calculation. Firstly, the F(r) 12. (12)
# integration is seen to be the sum of two equal con- i-I
tributions over the intervals (0, r) and (i-, 2r). Sec-
ondly, in using Gauss' method, it has been found ad- Three different electronic wavefunctions computed
visable for reasons of convergence to adjust the limits in the LCAO-MO-SCF scheme are considered, one
of integration so that the integrand attains a maximum given by Krauss,2 another by Woznik, and the third
near or at the ends of the interval(s) of integration, by Sinai.4 The difference between the first two is that
Thus the range (0, r) is divided into four intervals Krauss used Gaussian-type atomic functions in con-
such that the nL.;grand is maximum at one end of structing the molecular orbitals, whereas Woznik used
the interval and the integrals over these intervals are Slater-type orbitals. In both calculations the total elec-
equal. This division of the 4 integration into the in- tronic energy was optimized with respect to the orbital
tervals, (0, i/4), (i/4, ir/2), (w/2, 3r/4), and exponents. The best wavefunction obtained by Woznik
(3'/4, r) is defined by planes passing through the yielded a slightly lower value for the total energy than
two C-H axes and the y axis. The equality of the that by Krauss with a smaller number of atomic orbit-
integrals over these intervals comes about because the als. For both wavefunctions RCH = 2.0665 a.u. Sinai4

s axis is a fourfold axis of symmetry Ta, and produces used the smallest possible set of atomic orbitals in his
the final reduction of the 0 integration into eight equal calculation; IS, 2S, 2P,, 2P,, 2P, Slater orbitals cen-
parts. tered on the carbon nucleus and a IS orbital centered

The 0 interval is naturally divided into two parts on each of the hydrogen nuclei. The calculation was
(0, 01) and (01, r) by the C-H axis for each of these performed for RCH= 2.0 a.u. with no variation of the
integrals. orbital exponents.

The r integration is divided into three regions, 'M. Kraus, J. Chem. Phys. 3S, $64 (1',/3).
SaB. J. Wozik, Solid-State and Moleculi Theory Group, MIT,0<r<RCH, RCH~rRCH+8, and RCH+84r4 Quart. P Rept 47, 107 (1963).

RCH+16. RCH is the distance between the casbo= 4J.J.Slal 1. Cem. Ph3.,1575 (1963).
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As each of the integrals in Eq. (11) was evaluated 2. Krauss Wavefunction
using Gauss' method of approximate quadrature, the
variables of integration were transformed so that each Octopole moment= 1
integral is over the interval (0, 1). -- 26.3106+22.464e-aol

The six integrals, Eq. (11), were then considered in
pairs, each pair being characterized by the limits of =-3847e-a 0

3

the r integration. To eliminate unnecessary detail we 13= -0.570X 10l-e cma.
take the first pair, S r, I Total electronic energy
-RCH (15)ire[fi0 fdwf duf dtF(uw) -40.166 a.u.

( r-oi)f Idu'f I dwfd.  ] F(ulwt) Octopo)3. Sinai Wavefunction

+ o Octopole moment= I

as a paradigm. The r integration here is taken over = -23.85+17.87e-a 0 s
(0, 2.0665) for the Krauss and Woznik wavefunctions
and (0, 2.0) for Sinai's. The angular integrations are =- -5.98e-a 0e
as previously explained.

Numerical quadrature consists of replacing the in- =-0"886X10-e'cm.
tegrals with polynomials. Equation (13) then becomes Total electronic energy

r J K 
- 98 3 au

- RCH (15) 're[EOIFFFA ,BCkF(uiwjlk) - -39.863 a.u.
i jk

DISCUSSION
+(r-8i)-.E ,IAiB CkF(ui'wtk)]. (14) In a comparison of the results we see that the octo-

k pole moment is much more sensitive to the wave-
The weight factors A i, B., and Ck, and the points ul, function than is the total electronic energy. The differ-
w., 1k are known and readily available.' ences among the wavefunctions become most apparent

For convenience, the limits of summations were set through an examination of the resulting total electronic
equal (I= J = K = N) so that A i= B,= C,. The func- charge densities.6 If we compare the Woznik and Krauss
tion F(uiwjtk) was evaluated at the grid points by wavefunctions in this way we see that Kraussi' has a
determining the values of r, 0, and 0 for the known ui, flatter structure at the nuclei than does Woznik's.
wi, and 4, and then using these to compute F(umwitk). Further, it extends over a smaller region of space.
The entire procedure was carried out by a FORTRAN These differences show up quantitatively in the differ-
program written for the IBM 7094. A pilot calculation ent values of the octopole moment. Quite possibly an
to check out the program was carried out for I= J = extension of the set of Gaussian atomic orbitals to
K= 6 with the help of T. Kinyon. compensate for this difference would easily pick up

The different integrals using the MIT (Woznik) the difference in energy.
wavefunction were evaluated for different grid sizes The value obtained from Sinai's wavefunction falls
to establish convergence of the procedure, to deter- right in line with the other two values as judged by
mine the "best" grid size to use with the Gaussian the total electronic energy given by his wavefunction.
orbitals program as this calculation could be extremely The radical difference between these values and that
costly because of the large number of atomic orbitals, obtained from a one-center-expansion wavefunction
and to provide yet another check on the program. (- 1.8X 10-Ie • cm) clearly demonstrates the weakness

of that approach; namely, in correctly representing
RESULTS the electronic charge distribution. Finally, it is to be

1. Woznik Wavefunction noted that the three values of the octopole moment
Octopole moment= 13 presented here agree well with the value of +0.504X

10-24ecmn 3 deduced by James and Keenan' from their
=23.0989 (electronic contribution) theory of phase transitions in solid heavy methane.

-26.3106 (nuclear contribution) ACKNOWLEDGMENTS
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Generalization of Laplace's Expansion to Arbitrary Powers
and Functions of the Distance between Two Points*
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In analogy to Laplace's expansion, an arbitrary power r, of the distance r between two points (r, 01, 101)
and (r2, 02, Vz) is expanded in terms of Legendre polynomials of cos Ott. The coefficients are homogeneous
functions of r1 and r2 of degree n satisfying simple differential equations; they are solved in terms of
Gauss' hypergeometric functions of the variable (r< /r> ). The transformation theory of hypergeometric
functions is applied to describe the nature of the singularities as ri tends to r2 and of the analytic con-
tinuation of the functions past these singularities. Expressions symmetric in r, and r2 are obtained by
quadratic transformations; for n - -1 and n - -2; one of these has previously been given by Fontana.
Some three-term recurrence relations between the radial functions are established, and the expressions
for the logarithm and the inverse square of the distance are discussed in detail. For arbitrary analytic
functions f(r), three analogous expansions are derived; the radial dependence involves spherical Bessel
functions of (r<a/Br>) of of related operators acting on f(r>), f(r, + r2) or f[(ril + r2z)1].

1. INTRODUCTION but for three-dimensional problems it is more con-T HE inverse distance r-1 between two points venient to preserve the dependence on the angles,
Q, and Qj, specified by the polar coordinates and to redefine the dependence on the radii, and

(ri, 61, vs) and (r2, di, q2) with reference to a common the writer is not aware that the corresponding
origin 0, is given by the well-known Laplace expansion
expansion V. -= R.(rl, r2)PI(cos 012) (5)

r-1 = r; (r</r>)P,(Cos 0.), (1) has been given in the general case. If n is a positive
,-0 even integer, V. is the inth power of

where r2 =r e + re - 2rr2 cos 02,1 (6)

r<= min (r., r2), r> = max (r., r), (2) and the expansion (5) is a finite series terminat-
ing with I = in; the form of the radial functions R. is

cos tl -- ces 5
1 cos t independent of the comparative values of r, and r2.

+ sin 0, sin 0 2 cos (40, - A), (3) For odd positive values of n, recurrence relations

and the P, (z) are the Legendre polynomials. In based on (1) and (6) have occasionally been quoted;

physical problems, the distance between Q the expressions for n = 1 have been given explicitly

and Q, may be required to powers other than the by en.

inverse first, and an expansion analogous to (1) is The purpose of the present paper is to derive

required for such cases. One way of approaching the explicit terms in the expansion (5) for the general
the problem is to preserve the expansion in powers case. For variations of the positions of the points
of (rbrm); the expression Q, and Q,, the function V. appears as the solution

of the partial differential equation

2 Vr</r>)'C (coso,) (4) V R. = V2V. = n(n + I)VR_,; (7)

1-0 the corresponding differential equation for the

serves to define the angular dependence as Gegen- radial functions R., following from (5) and (7),
bauer polynomiils of the argument' (cf. B 3.152); together with simple additional conditions of dimen-

* This work was begun at the Luboratory of Molecular sionality and continuity, are solved in See. 2 in
Structure and Spectra, University of Chicago, supported by terms of Gauss' hypergeometric function
Office of Naval Research Contract Nonr-2121(01), continued
at Salford, and completed at the Theoretical Chemistry.. + (___(_) .
Institute, University of Wisconsin, Madison, Wisconsin, sup- F(a, 0; -, x) = 1 + )x , (8)
ported by National Aeronautics and Space Administration where
Grant NsG-275-62(4180). where

L. Gegenbauer, Wien. Sitzung. 70, 6, 434 (1874); 75, (a) 1 (a). a(a + (a + 8

89g(877).Bateman Manuscript Proect, Higher Transcendental
Functioas, edited by A. Erd~lyi (McGraw-Hill Book Com- = r(a + s)/F(a).
pany, Inc., New York, 1953). Sections and formulas in this
work are directly referenced by the letter B. 1C. K. Jen. Phys. Rev. 43, 5 10 (193).
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In Sec. 3, the extensive transformation theory of in( ) - n(- n - Col (14)
the hypergeometric function is applied to express c.. 2  - (I + 1),Y!
the R. in a variety of forms and to study their where (a). is defined in (9). Hence, with the defini-
behavior, expecially in the asymptotic case r, -- r2. tion (8) for Gauss' hypergeometric function, (11),
The results obtained are asymmetric in r< and r>, (12), and (14) yield
but by means of quadratic transformations can be
expressed in several symmetric forms; one of these R,,(r,, r2) = K(n, 1)rre-7
transformations has recently been derived by X FQ - in, - - In; I + (15)
Fontana" on the basis of group-theoretical arguments. 2n

In Sec. 4, Gauss' relations between contiguous The coefficients K(n, 1) are most easily determined
hypergeometric functions are used to establish re- by considering the case 0,2 = 0 when all the
currence relations between the Rni, and the case P,(cos 012) = 1:
of the logarithm and the inverse square are discussed
in greater detail in Sec. 5. V. = It> - r<I == 4 \/\->/; (16)

The results obtained in Sec. 3 are rewritten in

See. 6 in a symbolic form, independent of the power comparison of the coefficients of in (15) and
n, but involving powers or functions of differential (16) yields
operators; this yields an expansion theorem for an n(n - (n - X + 1)
arbitrary analytic function f(r). The more general (t - K(n, X)
problem that the function depends on the relative
orientation of Q, and Q2 as well as on their distance K X - 2 (X 2 - in)(-4 - in)
are considered in a separate paper. + ( ) - -

2. MATHEMATICAL DERIVATION + K(n, i. - 4) (X 4 jn)+(- in).(X - j),2! +"'"

Substitution of (7) into (5) leads to (17)
1) R., Considered as a function of n, the left-hand side

&I rf is a polynomial of degree ); it follows by induction

a'R. 22R , _R ,that each K(n, 1) must be a polynomial in n of
+ l(l + 1)"-" (10) degree I at most.

Now for positive even n, the series (17) breaks
Furthermore, the R., are homogeneous functions of off at I = in, and conversely for any value of 1,
degree n in the variables r, and r 2, and since V, is K(n, 1) vanishes for n = 0, 2, ... 21 - 2. Hence
a continuous function if r< = 0, they must contain it must be a multiple of n(n - 2) ... (n - 21 + 2)
the factor r.' so that or of (-in)a, and since by virtue of (1) all K(-1, 1)

R.,ri, r2) =are unity, the general solution is
K(n, I) = (-ja)/()a. (18)

where G.(z) is an analytic function for 0 < z < 1.

Expressing G. as a power series, 3. SOLUTION FOR THE RADIAL JUNCTIONS AND
THIMR TRANSFORMATIONS

S /The Eqs. (15) and (18) show that radial functions

and substituting (10) into (11), we obtain the & in the expansi (5) we given as

rurrence relationsr e~~.,(r,, r2) -"'
(s + 2)(21 +* + 3)c.. , ... 4) (),>

- (n - 21- .)(n -+ )e,.. (13) X (l- in,-i- in;l+I + . (19)

The sequence of coefficients thus begins with s - 0,
as the other possibility 8 = -21 - 1 would violate The hypergeometric functions (8) are finite sri

the continuity condition, and hence cs. - 0 for i.e., they are polynomials in z, if either a or 0 is a

odd a, and for even 8 - 2r, negative integer or zero. This implies that, for all
positive odd integer value. of a, the mis for &

' P. R. Fontana, J. Math. Phya , 825 (1961). break off, and if a -- 1, they consist of the leading
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term only, in agreement with (1). For positive the use of (9) and Legendre's duplication formula
even n, the series are finite for 1 _5 in; for I > in, (B 1.2.15)
the factor (-in), ensures that R, vanishes r(2z) = 2"-'r -r(z)r(z + 4). (23)
identically.

Of the numerous transformations of the hyper- The expansion (22) shows the nature of the branch
geometric function, the following are especially point for fractional n as r< approaches r>; we see
relevant in the present context [cf. (B 2.9.1, 2); that for n < -2, the individual functions R, are
(B 2.10.1, 2)]: divergent, though they remain integrable as long

as n > -3.
F(a, ft;'Y;X) For integer n, (22) needs special interpretation

- (1 - x)-*-F(-y - a, - - 0; -j; x), (20a) since either one series contains terms with the inde-
terminate factor 0/0, or else both series possess

- a - ) infinite coefficients. In particular, if the function F
- r( - a)r(v - [) in (19) represents a polynomial in r,/r2, it trans-

F(a, #; a + 0 - + + 1; 1 - x) forms into a polynomial in the variable (r> -

this corresponds to the terminating part of that
+ r(a)r( ) (1 - ) -  series in (22) which has negative parameters; the

terms of this series resume when the denominator
X F(y - a, y - [;7 - a - # + 1; 1 - x), (20b) in (8) also vanishes, a passage to the limit shows

that the ratio 0/0 is to be interpreted as 4, and the
- resumed terms exactly cancel the other series
- a) (-x) )(22). On the other hand, for the nonterminating

X F(a, 1 - y + a; 1 - 3 + a; x - ') series R, in (19), at negative even n the infinities
of the two series cancel out, leading to logarithmic

+ r(a)r(a - terms in agreement with (B 2.10.12, 13).(a)r( -- )The transformation (20c) when applied to (19)
* F(O, 1 + 0 - ; 1 -a +- 0; x-'). (20e) leads to

The first, if applied to (19), yields R., = (-In (-) t1 coo jnr "-r>
(-in) r<'r, - r> D

R.(rl, r,) = (j '-0r)( 4
x F(l - in; -I - In; I + ;

X + +2+ n, 4+ In; I+ 1; l, (21)r>'~ ~ r(- y~( + or + )i%1 +r;-
which shows that the functions F are invariant + r(-i)r(2 + i + i)

against the substitution n -*-n -4. Thus the 2

coefficients R are rational functions of r, and r2 X F(-1 - - in, -j - In; I - ; r , (24)

for odd integer n whatever its sign, and also for
negative even n as long as I < I In - 1, though the constant factor of the first series having been
in the latter case, the expansion (5) does not break simplified by means of the relation (B 1.2.6)
off as with positive even n. r(z)r(1 - z) = r/sin z. (25)

The transformation (20b) applied to (19) yields
Equation (e4) shows the nature of the analytic

R,. (r(, r+) 2 in + )(, , rjr>' continuation of R., from r, < r2 to rl > r, or
(1 + ]tn2 2 conversely. As expected, this agrees with the true

XrF I -n,-4- i n; n> - expression (19) for r, > r, only if n is a nonnegative
S - , - -even integer; in this case, the second series in (24)

21 + 1 r<(r2> - r<)2+2 has zero coefficient. For the nonterminating series
2%+s(n + 2 r,.+4 R, in the case of negative even n, the second term

2 r-' in (24) has a purely imaginary coefficient of in-
XFl -1n+ + 2, 4 + in; n + 3, 'r < (22) determinate sign; the true function (19) for r > r2r -corresponds to the first term in (24) only, and is

Here the gamma products have been simplified with therefore not the analytic continuation of R, for
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r, < r2, but its Cauchy principal value with respect 4. RECURRENCE RELATIONS
to the logarithmic singularity at r, = r. Any three contiguous hypergeometric functions,

The relations between the three parameters i.e., whose parameters differ by an integer only,
occurring in the hypergeometric function in (19) satisfy a linear recurrence relation; hence there
allow additional, quadratic transformations to be exists a linear relation between any three radial
applied to the RI. Thus, application of (B2.11.34,36), functions R (r,, r2), provided the values of I differ

F(a, 0; a - 0 + 1; x) = (1 + x) - ' by integers and those of n, by even integers. Thus

X FIa, ia + 4; a - ~ + 1; 441I + X)-2] (26a) application of (B 2.8.31) to (27b) yields
(4 + 21 + n)(21 - 2 - n)R 2,1

= (1 + x )- 2 F[a, a - O + 4; 2a - 213 + 1;

X 4X1(1 + A'Y2], (26b) + 2(2 + n)2 (e + ?.)R.,
- n(n + 2)(r - ?2)R.-2. = 0, (29)

to (19) leads to
of (B 2.9.3) and (B 2.8.45) to (19)

R,(r,, r2) = +-)r2(r + r)'
(h(r ~2)5i 1 + 2 + i

" F[I l- In, 11- in+- - 4r2 2 + +
X.r2, + r,2)2+I - I - n R.., 0, (30)

(27a) I -

(I) (r,r)' and of (B 2.8.35) to (27a)- (1), (% +r2)"

4rr2 1 (r1 4 r)R., 21 + 1
X F1 - in, 1 + 1; 2 + 21; (r, + r2)J" (27b) + _ 2

These expressions are completely symmetric in r 2 + I +- n R, (31a)
and r2, the asymmetry in (19) in the two variables 1 + I'
is related to the transformations inverse to (26) Elimination of R..-, or R.I from (30) and (31a)
and (27) [cf. (B 2.11.6, 31)], which involve square leads to
roots which must be taken with a fixed sign. This
lbads to variables of the form (r + r])Ra_ 21 + 11 + 4 l2R.~

rd + r, - - I Fr, + r2 - ri - ]r,+j1R

+'±+±Ir -r d and + r2 + Ir, -r1 J (28) 1 - n R.+2 .1 0, (31b)
+ I n -r ~ r 2 0+ (3bn

both of which equal r2/r, of (2). Similar considera-
tions apply to the factor outside the hypergeometric and

function. Fontana' has derived a formula equivalent R.,+ R.. - R+s.= 0,
to (27a) by group-theoretical methods, and given r1r2 1. + I I - . 1 + in 0 (31c)

explicit expressions for R-,,, and R-.2. in terms
of double factorials; a number of numerical results respectively, and application of (29) to (31a) and
given in Fontana's paper thus appear as special (31b) yields
cases of (26). For positive even n, the functions F n(r' - r4) 2R,_., = (21 + 2 + n)(r2 + r2)R..
in (27) reduce to polynomials; but for odd n, they
are infinite series, so that the main advantage of - (21+ 1)(21 - 2 - n)t~r,R..,/(l - 4), (32a)

(19) and (21) is lost by this transformation.
Hypergeometric functions which admit of quad- = -(21 - n)(r + r )R.

ratic transformations such as (26) are related to + (21 + 1)(4 + 21 + n)rr 2R. , 4 /(l + 1-); (32b)
Legendre functions. Comparison of (27a) with
(B 3.2.41) shows that the R,, (r,, r2) can be expressed with a renewed application of (30), this leads to

in terms of associated Legendre functions of the -
2

second kind QT[(r +r;)/(2rar 2)), where u= -1-4n = 2 (1 + 1 + n)'R
Since, however, the various definitions of Q7 for rr2  I + "
fractional g involve differing phase angles, this -2 (1 - 1 - in),R.t (32c)
approach is not studied further. I-4
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All these formulas are three-term recurrence rela- Similarly, (36) can be summed for I so 1, with the
tions, independent of the relative magnitades of ri result
and r.. As mentioned in the introduction, use has -

previously been made of (6) to express R..,., in Riot, 1 - 16 rlr2 )
terms of R.,.R.,..i and R..+i; such formulas are,

of necessity, four-term recurrence relations. < log + + r.D 3 'rrj (38b)
5. EXPLICIT FORMULAS FOR THE LOGARITHM AND I - I i (M)

THE INVERSE SQUARE Differentiation of (30) yields, with (35), for I > 0,

The expansion for log r corresponding to (5), rs + rs Ros., 21 + 4 R

log r = Rio., 5(rl, r2)P(cOS 012), (34) 1r - 21 + 3
-21 - 2 Ro.- 11- , (9

is most easily deduced from the limiting process 21 - 2 R10 1 , + 8,, = 0, (39)

log r - lim. a(,')O, as n -- +.0. (36) i,. being the Kronecker symbol. Similarly, (19)

The factor (-in),, which occurs in the expressions can be easily summed for n = -2 leading to
for R.1, vanishes for n - 0, 1 > 0, but gives a
nonzero derivative; hence for all I > 0 we obtain R-..o = log [(r, + r2)/Ir - ri](2rr,)-1 , (40a)
from (19), (21), and (27), R-,., - !(ri' + r+ ')

( - 1)! ()FQ ; I + ;t<) (368) X log [(r, + r.)/Irl - r.1] - 4(r~r,)-. (40b)
The recurrence relations (30) remain valid for

( <- 1)>ri(r > - r0)2 n- -2, butin (31) the limiting ratio P.+,(1+In)-

- ()5.-.i r>4  is to be interpreted as 2kl.,., (I > 0); similarly

( )in (32), R.,/n tends to Rio,., as n tends to zero
* (- +-2, 1;1-+-I; r < , (36b) andI>0.

(I - 1) 6. EXPANSION FORMULAS FOR ARBITRARY
\r- (+),- FUNCTIONS OF r

(3 1c The expansion (19) has the advantage that n
X FLil, *l + I;l + 1;J, (36c) occurs, as an exponent, for r> only, and, within

each gamma product, only in the numerator. This
S_-1)! (rlr,)\ allows the algebraic products to be expressed as

()1-1 (tr , r,) products of the operator (/ar>). In fact, we can

x 1, 1 + 1; 2l + 2; ,+r,). (36d)
TT53(- .(- - in). 47 "

For I - 0, the differentiation must be applied to INS ' L/ ±q- (
the other factors; (19) and (27) yield - >r> t r> r> -> (41)

R(rlr>)" , (37&) so that (19) can be written asR~. og + 2s(2# - 1)(2# + 1) 'aT'

(4rlr2) (37b) + -

lo+ (r) + r)(r + r,)E I (37b) 01 0 (2')!! 2

____8 +( (r, +L> (a. 25 11
28-, X > LL -) W I' (

. log (4 + D- i F, 8(8+ + ,/ (7))hr >\

the index of summation running from 1 to - in
a ases. These series can be summed, leading to (2k)ll - 2.4 ... 2k - 2'k, 0ll - (-1)I1 - 1, (43)

R,...o - log fit - rI (2k + 1)!! - 13 ... (2k + 1) - !+"(t),+,.

+ (r, + rX" log r. (+) This uhsts, for any function f(r) which can be
4r,r Ifr - rI reprmted is a finite or infinite sum of powers,
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not necessarily integer, which with (47) turns (50) into
f(r) - F, rX (44) i (21 +1)i,( Fr.r a ) ex (52)

i.e., for essentially all well-behaved functions f(r), (_ + fr O+ &
that Taylor's expansion, which can be written opera-

A(r) = i/,(r>, r<)P,(cos is), (45) tionally

,-0 exp (halfz)f(s) ( + h), (53)
where and the identity

(21 + 1)(-r<r>)' W-a..o ( (28 (54)
80(29)11 (2# + 21 + 1)! (*a1. =1O8:',(4

x 1 ( l /){L ( \±" 1} show that (52) is equivalent to

Or IrrKr1. (46),i] (5

his formula can be written symbolically by mean ( + + 2rr,)'], (55)

of the modified spherical Bessel functions which is another way of writing (49).
S1- 1 The convergence of the expansions (42), (49),

i(z) =(21 + 28+ 1)!! = I +&) (47) and (50) are not discussed in detail. Qualitively
* 2 Twe can say that, for any function A(r) which is

[this is not the notation given in (B 7.2.6)] as analytic for Irl < M, the expansions converges
as long as 1r11J + Jr.[ < M. If f(r) .r-*(n pd 0) tends

= (21+ 1)(_r<>)'(L >) to a finite nonzero limit as r tends to zero, this
(k 0?> does not affect the convergence for r, o ro, and

(1 i(r<8/ar>) ( even when r, = r., (22) shows that we can expect
X f> (ra/lar)' [r>1(r>)]f- (48 convergence as long as n > -2.

For two types of functions f(r), the expansions
Similarly, (27) can be turned into an oerational (42), (49), and (50) factorize. Let f(r) be a spherically
expansion if we introduce the new variables p = symmetric solution of the wave equation,
( r-") and r -r+ r. Thus (27a) leads to

_ (-r.r)''(21+1) ( ¢V '
a(2a)l (2. + 21 + 1)! ) i.e., a spherical Bessel function of order zero of the

(,(21 + [ } first, second, or third kind (B 7.2.6),
p j o(r) -sin (Ir)/(kr), yo(kr) - - ces (kr)/(kr), (57)

Similarly, (27b) yields A1"(fr) -i-"ICkr), h"(1r) -

1 where the same relation as (47) holds between the
- (21 - 1)! pairs of functions j and Js+,, yj and Yj+j, and

h- and Hj+.. Then in view of (56), the recurrence
X (-I- +/). + ( A . (r ) relations (3 7.11.7-10),

.1(2+2). Vr, 6r+

rr, a Y W,(z) -Z -'a/dz d)o(z), (58)2 1 -+ ) I(2 - + W; -. jY -l,
X 41 + 1; 2 + ; .r (), (50) and the series expansion for j,(z) which differs from

r+ a(47) only by the factor (-)°, (45), and (46), lead to

where 0 is the confluent hypergeometric function wo(kr) - 1 (21 + 1)j ( r<)wv,(kr>)P,(coo w,,),
(B 6). In both (49) and (50), the product rtr, is (59)
to be treated as a constant on differentiation. The tW = i, y, h" ) , h(') ,

equivalence of (49) and (50) follows from the which is Gegenbauer's addition theorem' (B 7.15.28,
connection of O(a; 2a; 2z) and the Bessel functions 30) particularized to spherical Bessel functions. For
(B 6.9.10), the modified Bessel functions i, and k,- (r/2)K, j,

(s) - [(a)7( + )]c'(j + P; 1 + 28; 2r), (51) the corresponding results are, in view of (B 7.2.43)
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and (B 7.11.20), or, on dividing by the common exponential,

io(kr) = (-)'(21 + 1)ig(kr<)i (kr>)PI(coo #,j), (60) exp (2kr~r2 cos 01j)

k0(kr) - (21 + 1)i,(kr.)k,(kr>)P,(cos O,) = F (21 + 1)i,(2krtra)P,(cos 01s). (63a)

(of. B 7.6.3); the latter serves as the basis of the For imaginary values of k, this becomes
zeta-function expansion about a common center in
the method by Barnett and Coulsona for evaluating exp (2ikrtr1 cos t1)
molecular integrals. = i(21 + 1)j,(2krlr,)P,(cos 0.,); (63b)

If ](r) is a Gaussian function, these two formulas are equivalent to Sonine's

)(r) = exp (-kW2 ), (r-'a/Or)f(r) = -2k(r), (61) expansion (B 7.10.5) for P = ; (63b) is equivalent

the expansions (49) and (50) factorize, with the to the well-known expansion for a three-dimensional
result plane wave in terms of spherical harmonics.

exp (-kr) = , (21 + 1)i,(2kr'r,) ACKNOWLEDGMENT

X exp [-k(?, + e,)]P,(cos #.x), (62) The writer wishes to thank Dr. A. W. Weiss,
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For any vector r = r, + r2 an expansion is derived for the product of a power rN of its magnitude
and a surface spherical harmonic YLM(d, V) of its polar angles in terms of spherical harmonics of the
angles (01, vi) and (0,, fl). The radial factors satisfy simple differential equations; their solutions can
be expressed in terms of hypergeometric functions of the variable (r</r>)I, and the leading coefficients
by means of Gaunt's coefficients or 3j symbols. A number of linear transformations and three-term
recurrence relations between the radial function are derived; but in contrast to the case L - 0, no
generally valid expressions symmetric in r, and r2 could be found. By interpreting the terms oper-
ationally, an expansion is derived for the product of YLm(o, p) and an arbitrary function f(r). The
radial factors are expansions in derivatives of f(r>); for spherical waves, they factorize into Bessel
functions of r, and r: in agreement with the expansion by Friedman and Russek. The 3j symbols are
briefly discussed in an unnormalized form; the new coefficients are integers, satisfying a simple recur-
rence relation through which they can be arranged on a five-dimensional generalization of Pawal's
triangle.

1. INTRODUCTION The most useful definitions are for the unnormalized

N the preceding paper,' a generalization was harmonics
derived of Laplace's expansion for the inverse e.eP 1 cb

distance between two points Q, and Q2, specified by , I (co 0), (3a, b)
the vectors r, and r, or the spherical polar coordinates P7(0, ,o) = e'"P'P(cos 0),
(r, , v.) and (r 2, #1 ,, ). It was shown that in and the normalized form
the expansion for an arbitrary power of the distance a the normalized form
in terms of Legendre polynomials of (cos ) Y'(0, ,) = [(21 + 1)( - rn)!/4w(l + rn)!]

Ir2 - rI' = , R.,(r,, r2)PI(cos 0,2); (1) X e'P(co,6). (3c)

the radial functions R., can be expressed in terms of The functions P,(cos 0,2) in (1) can be written as
hypergeometric functions of the argument (r</r>)2 ,  1
and by giving the expressions an operational in- PI(cos -= (-)flT(J, ,)O' (0, ) (4)
terpretation, an addition theorem was obtained, w r io nf
valid for arbitrary analytic functions of 1r2 - rI. with corresponding expressions in terms of 0 or

A more general addition theorem would apply Y (cf. B 3.11.2)."

to functions H(r2 - r) or H(r2 + r,), depending The purpose of the present paper is to derive

on the direction as well as on the magnitude of the expansion for the product of a spherical harmonic

the vector argument. In Cartesian coordinates, such and a power of the radius

an expansion is given by Taylor's theorem in three VNvL =f aZ k(0, p)
variables; in many physical applications, however, - , R(N, L, 1,, 12, M, im, tn; ri, r2)
it is of advantage to specify the dependence on
the angles in terms of spherical harmonics. These X n':(0,, ,)fl:(0 , p2), (5)
harmonies can be defined in several ways in terms and its generalization for functions of the type
of the associated Legendre functions P"(z), f(r)no(#, 9). In contrast to I, the vector r = (r, 0, pe)

P (x) = (-)'(1 -x)' 1-1 [d1""P1(x)/dx"'1]; denotes the sum of r, and r2 ; the corresponding

P-"(z) - (-)"P7(x)[(l - m)!/(l + m).]. (2) expressions for the difference (r2 - r,) differ fromI those in (5) at most by a sign, corresponding to
* Supported in part by National Aeronautics and Space the in (5 at mosteby a n n, cspin o

Administration Grant NsG-275-62(4180). This work was the parity of 1,. The spherical harmonics in (5) could
begun at the Laboratory of Molecular Structure and Spectra, equally well be expressed in terms of 0 or Y; the
University of Chicago, Chicago, Illinois, Supported by Office
of Naval Research Contract Nonr-2121(01). 2 Bateman Manuscript Project, Higher Transcendental

t Permanent address. Functions, edited by A. Erdhlyi (McGraw-Hill Book Com-
I R. A. Sak, J. Math. Physics S, 246 (1964). (Hereafter pany, Inc., New York, 1953). Formulas in this work are

referred to as I). directly refrenced by the prefihB.
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ADDITION THEOREM FOR ARBITRARY FUNCTIONS

corresponding radial functions R. and Rr differ other group-theoretical arguments are employed
from R - Ra only by a factor which is easily cal- in this paper. The only use made of the extensive
culated from (2) and (3). In view of the trans- theory of normalized harmonics'" is of the relation
formation properties of the normalized functions Y, between the integrals over triple products (Gaunt's
their use would have the advantage that the coefficients)'' and the 3jsymbols, and the results
azimuthal quantum numbers m = M, m, m, can obtained in terms of the functions Q'Preformulated
affect the expressions Rr only through the Wigner in terms of the normalized harmonics Y.
coefficients or 3j-symbols.3- The writer's personal The solutions of the Eqs. (7) satisfying the
preference is for the functions 0, as they do not appropriate continuity conditions will be derived in
necessitate the use of square roots; the place of Sec. 2, and the results discussed in Sec. 3. A selected
the 3j-symbols is then taken by unnormalized 3j- number of recurrence relations are given in Sec. 4,
coefficients which have the advantage of being and in See. 5 the formulas are given an operational
integers; as shown in the Appendix, they can be form, applicable to arbitrary functions of r. The
arranged on a five-dimensional generalization of special case that one of the vectors points in the
Pascal's triangle, direction of the polar axis is considered in a later

For some specific cases, expansions of the type paper.
(5) have been given before; an addition theorem
for solid spherical harmonics (N-= L or N = -L - 1) 2. MATHEMATICAL DERIVATION
have been given by Rose,' and for spherical waves To avoid an excessive use of subscripts, formulas
by Friedman and Russek;' more recently similar in this section are derived for the range r, > r,
results have been rederived by Seaton.' The radial only. The dimensionality of (5) requires that the
functions in the expansion (5) for the general case functions R be of the form
could be obtained by combining these results with R(N, 1, m; r,, r,) = r1 r2 x C-,N(,/?I) (
those of I, i.e., by considering the product

VNL n L, (6) The differential equation (7a) substituted in (5)
leads to

but this would involve the summation of multiple 8,R 2 R
infinite series. Instead, the derivation of the func- - + -U - ( 1)
tions R for arbitrary values of N are based, as in I, el Ir

on the solution of the set of differential equations O'R 2 aR RP7 +-- 1(12 WR (9)
V *IVv ,. = V , .VN M , (7a)

which together with (8) yields the recurrence
V'VNLM W (N - L)(N + L + 1)V-..M. (Mb) relations

These solutions are again expressible in terms of (8 + 2)(211 + 8 + 3)cN...2
hypergeometric functions, and leading coefficients
are determined by comparison with special known (N - l - l1 - s)(N - l4 +, 1 -*CN.. (10)
cases; it is found that these constants can always The leading term in the power series (8) is of degree
be expressed in terms of integrals of products of a = 0, since the other possible solution, beginning
three harmonics which may be given in their with 8 = -21 - 1, would lead to a singularity
normalized or unnormalized forms. An alternative as r, -+ 0. As in I, the solution is best expressed
method of deriving these coefficients could be based in terms of Gauss' hypergeometric function
on the transformation properties of the spherical
harmonies, but nether this approach, nor any F(a,6;7;)- 1(a ), '[(yr).1I, (11)

0

sE. P. Winer, Group Theory and If# Application to the where
Quantummw Aic of omic Spectra (Academic Press Inc., (a)o - 1; (a). f (a to) f a(c + 1) ...
New York, 1959).

' A. I. Edmonds., Angular Momentum in Quantum Me- x (a + t - 1) - r(a + u)/(). (12)
chanica (Princeton University Press, Princeton, New Jersey, x + 1+_n

M. E. Rome, Bentr Them, I of A~dor sJ. A. Gaunt, Phil. Trans. Ro . Soc. A228, 151 (1929).
(John Wiley& o Inc, Now Yor, 1961). ar Momentum M. Rotenberg, R. Bivins, . Metropolis, and J. K.

M. E. J. Math. and Phys. 17, 215 (1958). Wooten, T. 3- and 6- Symbol. (Technology Preso, Cam-
' B. Friedm and J. Russek, Quart. Appl. Math. 12, bridge Masauchusetts, 195).

13 (195 4 ). 1 Th archaic form (a; w) is employed nadnly whms
SM. J. Sestoo, Proc. Phys. 8 7, 184 (1961). W carries a mWAbaript.
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If we abbreviate This is the unnornialized form of Roee's addition
(L + 1+ > - A - L, theorem.' Multiplication by r gives rise to terms

X( - A - , , - A (13) for which (20b) is no longer satisfied. For positive
even n, Eq. (19) of I shows that in the expansion

and use n as defined in (6), the solutions (8) rmd (1) for Jr* + r,(*, the radial coefficient of P) is
(10) can be expressed in the form )d(rrs)X/()i for X - in, and vanishes for ) > In.
R(N, 1, m; rl, r,) Hence the leading term in R(, + 14, 1, m), in view

- K(N, I, m)rj'r-"F[I(l, + 1. - N), of (6), (13), and (19), is made up of terms
- 1 - I - N); 1, + I; el/rj, (14&) Xl r1r" (L + f)!

- K(N, 1, ,)r +L-1, ( +
× F(X - a, -* - jn - ),; 4 + j;r /r). (14b) X " (21)

As the functions fl' have the parity of I on inversion, The product of two surface harmonics of the same
(0, P) --* Or - 0, ir + ) , K(n, 1, m) can take coordinates (#, V) can be expressed as a sum of
nonzero values only if spherical harmonics,'''.12

L-11- Is- even, (15)(20)(2).)(+ )(+X )I
and hence all the quantities defined in (13) are ( (21 + 2X)! ?0 (1 - m) QA - 5)!
integers. The leading coefficients K in (14 a,b) X + 9-1,+
satisfy the recurrence relation, in view of (7b): 1 +  Xt, + (22)

n(n + 1 + 2L)K(N - 2, 1, m) This leading term can be found most easily by a
- (n - 2X)(n + 1 + 2X,)K(N, 1, M). (18) comparison of the leading coefficients of Pr(x),

This meas that K depends on n through the factors which in view of (2) and Rodrigues' formulaThismeas tat depndson thoughthefacors(B3 3.6.16), are

(-Jn; )(-i - in - L;x,); (17)

the only other way K could depend on n would P"(x) (-)(l

be through an additional, periodic, factor of period X [(201/2'1! (1 - m)U'- + . (23)
2; but, according to the results of 1, the factor ro The leading coefficient K in (14) for N 11 + 12
in (6) does not show any such periodicity and the thus becomes, in view of (21) and (22),
solid harmonics are independent of n; hence (17) K(11 +
describes the full dependence of K on n. To find
the absolute value of K(N, 1, m) we first consider (L + M)! (1 - m,)! (4 - t 1)! (2x)l ,l 4!
.the case N - L or n = 0. Making use of (B 3.7.25) X I X,! 1 (;)j\(21,)1 (21Q)
and its converse ( L 1(

P"I(cco)e"" ( + i)! U(, (24)

[ s( where the symbols U represent the sums
cJo [c#++ s in cs ( - ()]'e' d (1n)

,csos+jsjn-(cs(), (8 ( 2X 21,1 )(

" "t+ nM) I x  J , (1b) × (25)

we obtain for the solid harmonis, by memo of the x+ / Xi u - hn+X , +
binomial theorem, provided (20&) holds. They are related to the Wigner

r OL (, P) - 2rLI J (S, + iz, cos 3j-ymbols'

+iyin,'+z2 + ix cos0 + iya in *)Le'" d U i 3 s) I In i' ), , n

S (L +M)w,(+in (4 + mr in,X, ri"1,. (0,, 0,0,060,,2, (1) (2& + 1)1 j n) j ,I' (

the sum to be taken over all
is L Ifeld and T. E. Hull, RevMd. Phys. 23, 21 (1951).

m, + M, -if; 1, + 4 -L. (20 &,b) u . A. Hyneras, Math.Scand. 10, 189 (19
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where, for this equation only, we have put R(N, 1, m; r , r.) = K'(, m)R'(N, I; r,, r.), (32)

A = J(j + j + j.); (27) where

X. = A -j. 0 (8 = 1, 2, 3). K'(l, m) (-)"(l. + )(1. + 1)
In the present context these unnormalized 3j- L 1, 1,

symbols are required for integral values of 1, m, X , (33)
and X only, but, as shown in the Appendix, their (M - M -m2)

definition (25) also covers the case of half-integer (-In; X)( + n; L)
parameters. For integer A they are invariant under R'(N, 1; r,, r2) - ( ; ll + 1)( + n; Xl)rr
a permutation of (1, 2, 3) in (26), and under a

simultaneous change of sign of all the m.. X F(X - In, -I - in - Xj; 1, + ; lr/r2), (34)
The expression (24) can be simplified by the and the symbols are explained in (6), (11)-(13),

explicit use of Gaunt's coefficients'" for the integral (25), (28), and (29); for r > r,, the subscripts
over the product of three associated Legendre func- 1 and 2 should be interchanged. Equation (32)
tions. If we put factorizes the functions R(N, 1, m) into a constant

I L  1 11 K', independent of N or n, and a function R',2) independent of the azimuthal quantum numbers m.
The precise separation is, to some extent, arbitrary,

PA(z)P-(X)P'"'(z) dx, (28) since any dependence on 1 or X only can be drawnf- (28)Iinto either factor; the selection (33), (34) was chosen

where the azimuthal numbers add up to zero, these primarily to give the recurrence relations of Sec. 4
integrals can be expressed in terms of the U's as' their simplest form. In the case of spherical symmetry,

IQ1L 1 ,4 L=M= X1,X 2  , m1  =m -m = , (35)
(M -n - 22

1  1, = = -. 1, K' = (-)+"(l + ),
= ()A 2 (l. - mj1 (12 - m)! (L + ) A! and the R' differ from the functions R., of (1) and

(2A + 1)! X, X,! X1 I only by a factor (I + I)-1.
U(L 1, If the spherical harmonics in (5) are given in

X U i, (29) their normalized form Y", (3c), the analogous
M -M - ) radial functions Ry can be factorized as in (32),

so that (24) becomes Rr(N, 1, m; r1 , r,) = K'(1, m)R'(N, 1; r., r.), (36)

K(Ij + 4=, 1, r) where R' remains unaltered as in (34), whereas in
(-)KX! (I; A + 1) 1 L-i, -2 (30) view of (3c) and (26),

(;- - M2/ K(I, m) = 2r(-)'(LM I Y ' l, m,). (37)

Using (17), we find, for the leading coeffici, t for Here
arbitrary N,

K(N, 1, m) (LM IYTI I'm')

X)(- -j - L; ,) = (-) M[(21+ 1)(21' + 1)(2L + 1)/414 1]

X K(l1 + 13, 1, M MmM, 00

X ()M (12 + )(-in; ?)(f + in; L) = ff
(I; l,)(I + in; X.)
X in(L 1, (31) X sinot d(d (38)

(M - M, - m2 is the integral of the product of three normalized
harmon!2s taken over the whole unit sphere.'" In

3. DISCUSSION O1F THlR RADIAL FUNCTIONS R view of the properties of the 3i-ymbols, the co-

According to (14) and (31), the radial functions efficientis K', and hence the radial functions R,
R in the expansion (5) are given, for r2 > ri, by ane nonzero only if the conditions
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11- 121 _ L_ 4 +12 (39) R'(N, l;r,r 2)

are satisfied, as well as (15) and (20a). The functions 2"+'(-in; X)(j + in; L)(2 + n; L) r, A-z

R also vanish, in view of (13), (32), and (34), if (1 + In; A + 1)(I + in; X)(I + in; 2) r

L< N < l 12, n even, (40a) X F(X- In,-I- In-X,;

or -n - 1 - L; (r22 - r,)/r2)

[ - ( + In; LL r -r
2 

- r2N+2-1
-L < N + 1 < l, - 12, n odd, r2 > r1 . (40b) + L(n + 2; L + 1)2" r +'+" I

The hypergeometric series are polynomials if / F(A + , 3 + n + 2

N > l, + 12 , neven, + 2
)r- (45)

or n+,3+L; 2 ]'45

N _ 1 - 12 - 1, n odd; (41) where the coefficients have been simplified in view

if either equality holds, they reduce to the leading of the properties of the gamma function (B 1.2.6)
term unity. The particular case N = L has been and (B 1.2.15), or (23) and (25) of I. This equation
discussed in (19) and (20); if N = -L - 1, the shows the nature of the branch point as r, approaches
only nonvanishing functions in (5) for r. > r1 are r2; the difficulties arising for integer values of n

those for which 12 = L + 1, and for these we have, have been discussed in I, following Eq. (22); the
in view of (22) or from Refs. 9 and 11, result is either a polynomial or a series involving

logarithmic terms.
4L, ,, L +M/ = ()M-. In the case L = 0, it was shown in I that, by

iM, -m, m1 - M) means of quadratic transformations applied to the
2(2L)! (2l)! (11 + L)! (I. + L + m, - M)! hypergeometric functions, the radial functions R.,

X (42) could be expressed in several forms synunetric in
(21, + 2L + 1)! L! 4! (L - M) (4 + in,)! r and r., involving power series in rir 2/(r, + r 2)2

so that (5) and (32)-(34) yield or in r~r2/(r + r2). The same transformations can
be applied whenever 1, = 12, regardless of the

r-'- fl (O, ) value of L; for general values of 4, and 12, (34)

fi () ( + L + m - M)! £ -L-£-£ shows that even the leading coefficients are different

(1 + M)l (L - M)! t1?1  'as r, < r2 or r, > r2 . In consequence, it is unlikely
that analogous simple symmetric expansions exist

XZf)"t, 6 (02,). (43) in the general case. On the other hand, the leading

This corresponds to the expansion for normalized coefficients in (45) are invariant for r, r2, and

"irregular" solid harmonics given by Rose6 and together with the symmetry of the recurrence rela-

recently by Chiu." tions derived below, this suggests the existence of

As in I, the transformation theory of the hyper- symmetric expansions involving power series in the

geometric functions can be applied to the expression two arguments r~r+/( 2 ) and (ij - ))/( + r)

(34) for the functions R'. Thus (B 2.9.1, 2) or Eq. or similar variables, though presumably involving

(20a) of I leads to the one variable only to a finite power depending
on 11, - 121. So far the writer has been unable to

R'(N, 1; r,, r.) derive such expansions.

(-in; X)(j + in; L) r&"(r- .)N+2 Quadratic transformations for arbitrary hyper-

(J; 11 + 1)(I + In; Xj ,.N+4+1, geometric functions have recently been derived by
Kuipers and Meulenbeld" in terms of generalized

X F(A + 2 + , I + in + X.; 4 + 1; 4/r), hypergeometric functions or MacRobert's E func-
(44) tions, [cf. (B 4) and (B 5)]. This generalization,

which shows that the radial functions are also however, is not quite relevant to the problem at

rational in r, and r2 if -(14 + 12 + N) + 1 or this stage, as it corresponds to a generalization of

j(11 - 12 + N + 1) are negative integers. Similarly the transformation from (27a) to (27b) of I, and

(B 2.10.1) or (20b) of I yield not of the transformation from (19) to (27).
" L. Kuipers and B. Meulenbeld, J. London Math. Soc.

14 Y. N. Chiu, J. Math. Phys. 5, 283 (1984). 35, 221 (1960).

293



ADDITION THEOREM FOR ARBITRARY FUNCTIONS

It might be considered that the expansion (5) (i) Between any two of the three functions R',
would simplify if one of the vectors, say r,, points none of the numbers L, 4, and 12 differ by more
in the direction of the polar axis; for this choice than unity.
all the Legendre functions of cos 01 are 1 or 0, (ii) One of the angular quantum numbers remains
according as mt 0 or m, 0 0, and hence for all constant, the second varies by at most unity, and
nonvanishing terms, m, = M. The individual terms the third by at most two units.
in (5) are therefore considerably simpler than in the There are eight inequivalent three-term recurrence
general case; on the other hand, because of the relations of type (i) and 12 of type (ii); for the sake
restrictions imposed on r,, the rotational quantum of brevity, only those parameters are indicated
number 1 ceases to be meaningful and any consistent which differ from L, 1,, 4,, e.g., R'(L+, lI-) ,
expansion making use of this restriction should R'(L + 1, 11 - 1, 4.) [d. (B 2.9)],. and N is under-
reasonably involve an implicit summation over 1,, stood to vary according to (47). The formulas are
i.e., over products involving 3J-symbols. From an
analytic point of view, these symbols are generalized (I + n + L)(r -

hypergeometric series' [cf. also (B 4)] of unit = (XI + I + in)r.R'(L+, 4+)
argument and all integer parameters, and any - (X\ +I + in)rR'(L+, It+), (48a)
expansion involving such functions is likely to lead
back to functions of at least the same, and possibly = OX - 1 - in)rR'(L+, 4-)
higher, complexity. This has indeed been found to
be the case, and in order not to complicate any
further the mathematical apparatus required for = (A + 2 + in)rR'(L+, 4+)
the present paper, the case 61 = 0 is to be considered - - 1 - in 1R'(L+, I-), (48)
separately in a later publication.

4. RECURRENCE RELATIONS -0 + + in)rR'(L+, 4-)

The relations between contiguous hypergeometric + (X + + in)rR'(L+, I-); (48d)

functions (B 2.8.28-45) can be used, as in I, to (4 + in + L)-R'
derive linear recurrence relations between any three
radial functions R' for which L, 11, 4 and IN differ - i)-'[r,'(L-, 4+)
by integers only; the recurrence formulas between + r1R'(L-, I+)], (49a)
the coefficients K' of (33) or (37) are known from
the theory of angular momentum.' ' ' 10 Equation (I + in + )-Y'r'(L, -)
(14a) shows that the functions F depend on n and - rR'(L-, +)], (49b)
L only through their sum N; according to (34), (1+in+

R'(N, L + 2, 1,, 4) 3 + N + L + rR'(L-, 1,-)], (49c)
R'(N,L,,4) = L-Nv

3 +- L + 2 (A + I + in)-1[r3R'(L-, 4-)3 3+n +2L (46)
n + rR'(L-, I,-)]; (49d)

It is therefore sufficient to derive any further (4 + I)R'
relations for varying values of the angular quantum - ( in + L )r,[R'(L-, 4+) + R'(L-, 4-)],
numbers L, 1,, and 1 only, leaving Oft)

n - N - L =- cort; (47) ., r,[(A + 2 + i)('XI + f + jn)R'(L+, 4+)

the value of N ct n then be increased or decreased
in steps of 2 by means of (46). In view of thelarger - 1- in)(x,+I+in)
number of independent parameters, the number of X R'(L+, 4-)]/(f + in + L)(r - r )j, (&b)
recurrence relations for even small changes in 1 are
considerable; we therefore confine our attention (t,/r)-(Q't + I + in)R'(/ -, 4+)
to the following special cases: + (X - 1 - n)R'(1Q-, 4-)], (5a)

N P. E. Bryant, TablO of W= 4-,ymbo_ (Ra. Rept. (r,/rt)[(A + 2 + jn)R-'(-+, 4+)
60.1, lpultm"W by Univerdty od Sothpton, Soutampton,
00-1 W)i. Unvriyi~+ G + in + ).'Q(+,16-)]; (51b)

Errata: Following (47),
value of L at constant N 294
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(L + n -+ 2)(1 + in + L)raR' Hence any function j(r), which can be represented

(I + in + Las a power series in r, we can expand, in analogy= (i+ i + ),( -dR'(-, ,-)to (5),

+ (X - 1 - jn)(X + in + I)R'(L+, 12-), (52a) K(l, ie)10; ri, r2)

i -(I + In + L)2(r - 41)R'(L-, 4+)

+ (2 + A + in)(XI + in + I)R'(L+, 4+). (52b) X 018.'$, 00018:(02, Q (55)

The other six relations of the type (ii) ar obtained where K' is given by (33), or by (37) if normalized

by an interchange of the subscripts I and 2 in surface harmonics are used. For the radial functions

(50)-(52). Although the resulting equations are we obtain from (34) and (54)

invariant on interchanging (l, r) and (12, r2), their f'(1; rl, r,)

derivation is not symmetrical; thus (50) follows r,+go.l,(l;r2)
from (B 2.8.32, 37), but the corresponding equations 2(-)' 0 (21 , 2a 1)! (28)! r (56)

for varying 1, follow from

S- 1)(F(7-) - = F] = caF(a+, -, 7+) (53) (for the double factorials see (43) of I), where
-;1-1'.{1 d L-1.

and from (B 2.9.1, 2). Equations (49 ab) follow g.(l; r2) Trii(-4) r2
from (B 2.8.38, 43), and (48c, d) from (B 2.8.35, 42); r.)

the remaining relations are derived from these by F d' L L + 1) I'
linear elimination, -though to prove (51), the values X 7d - J ti2f(r )], L _ 4, (57a)
of L in (48) and (49) must be lowered or raised. 1 -'-

It should be remembered in applying the re- r2 j- 2- I- rL

currence relations (48)-(52), that they do not apply 2

to the full radial functions R of (32); these latter X d- L(L + 1)]<. 7
vanish whenever the triangular condition (39) XT r J [rI(rs)], L < 4. (5Tb)
is violated because of the factor K' in (33), whereas Alternatively, the powers of the operator (r;d/dr2)

the factors R' have perfectly well defined, usually anter at, th the e t

nonzero, values in accordance with (46) regardless
of the relative values of L, 1, and 1,, provided r d _ 12(03 + 1)1xa 1

only (15) is satisfied. (1,r) = P-?

S. AN OPERATIONAL EXPANSION FOR ARBITRARY 1 d 1-8.
FUNMCIONS X [r.L'(r.)], L > 4., (ft)

As in I, the way in which the power N enters 1 F' 4(4+1)
into the expressions (32)-(34) allows the functions T- -LP 2

R'(N, 1; r., r) to be expressed in operational form. l
For r, > r,, the expressions differ according to the 1 d L < . (58b)

relative magnitudes of L and 1,. For the factor in L2 dr3 .J L I

the general term in (34), which depends on N, The quadratic operators occurring in (57) and (58)
we have, using (11)-(14), can be factorized, but not expressed a squares;

(-)"2" "(JL - IN; X + a) hence the operational factorization of 1, in (48) of I,
i(-I -IN - IL; ). tems nt a esoBsfnadi tialopert,

does not appear to have a simple analog in the

S -general case.
Sr; - W2) ° The expressions (56)-(58) factorize analytically

[e M +if I is a spherical Bessel function,
W. L+ 1r: ,, 4, () f() w r), wL - i., y., h h?) (59)

,.'.(1. );a -I-L in the usual notation, satisfying

(2dd'/ - L(L + 1)/r'J[r(r)] - -k'r(r). (0)

X 0 L + L - ( In view of (B 7.2.4446, 52, 53) and (B 7.11.5-13),
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we have where

(z'd/dz)'[z-w, (z))), 6 - 2 j, + m2 - ma - m, + 2m,

(z--1dzyrz'w,(z)] m. - 2m, (mod 2), (A2)

so that (56) and (57) or (58) yield and the sum is to be taken over all integral or
half-integral values of 1A (depending on X) for which

f'(l; r., r.) = 2jj.(kr.)w.(kr2), r2 2_ r,. (62) all the binomial coefficients are nonzero. The relation

Substituting this into (55) and making use of (33) of these quantities to Wigner's normalized 3j-Subsituingthi int (5) ad mkinguseof 33)symbols? - " is given in (26); like the latter they are
or (37), we find an expansion equivalent to the ib.ar is gn n (;lik thmlatter te are
expansion theorem for spherical waves derived by invariant under a cyclic permutation of (1, 2, 3),

FriemanandRusek' aparet dscrpaniesareand are multiplied by (- )2 for a noncyclic perinuta-Friedman and Russek'; apparent discrepancies are tion or for the transformation m --, -n. On the

due to the differing definitions of the spherical other hand, the constant numerator in the sum
harmonies. For modified spherical Bessel functions, (Al) d the Reggn sy metri the sm

the expressions corresponding to (62) become, in (A) destroys the Regge symmetriesr a of the symbols
view f (B .7.1922),under permutation of the triples 2X., j. +m., j. -m..

view of (B 2.7.19-22), Against this loss of symmetry, the definition (Al)

f - il(kr); I 2(-)'ij,(kr)i,.r 1 ), (63) has the advantage that all the terms in the sum
-- = k (kr); J ' - 2(-) i .(kr2)ikr2: (63) are integers which, even for A - 16, never exceedI -- l,(lc); j' ff2(-)'i,,(r,)k(r,), r, _> rI. 10'. For j, =i j, -it, i.e., X, = 0, the sum reduces

It should be borne in mind that the actual signs to a single term,
in the expansion (55) are not necessarily those j s I j+ ., j.\
given in (62) or (63) in view of the changes in U M - S )

sign occurring in (33) and (37). - - n3 , n3 , n 3 !
The algebraic recurrence relations (48)-(52) are ( 2J2

not directly applicable to the operational expansion =fi (-) 2j'M . (A3)
terms (55)-(58); it should, nevertheless, be possible \i2 + m,/\Ja + ma!
to derive recurrence relations for the functions f(l), In view of the proper.y of the binomial coefficients
if necessary involving more than three terms. Such
relations might lead to a considerable simplification (N_1N -1)+I(N -1) (A4)
in the evaluation of the radial functions. M \M 1 M

APPENDIX: THE UNNORMALIZED 3SYMBOLS the definition (Al) entails the recurrence formula
The theory of the Wigner 3j-symbols is well /j j _. (jl s-,,-,

established" - and their values have been extensively Ut of the UWp 3 - i -
tabulated'' 1 ; it may therefore appear futile to \m1  m2 m3/ \m,, na- M , mS + /
return to the use of unnormalized harmonics and j, - 1, i (
3-symbols associated with these. However, the -U (A5)
use of integers has its advantages, compared with (n, M2 + i, M3 -)

expressions involving square roots, and from this the equivalent formula for the normalized 3s-symboIs
point of view, the symbols U introduced in (25) has been given by Edmonds." Apart from signs,
may be found useful. Their definition is easily the relation (A5) is similar to that obtaining in
generalized to any set of integral or half-integral Pascal's triangle; and since for is = 0 the absolute
parameter. (., m.), provided m- + m- + m- - 0, values of U are binomial coefficients, the whole set of
all the (j. + m.) as well as 2A -- ji + j2 + ji are coefficients U can be regarded as a five-dimensional
integers, and the triar.gular relation (39) holds for generalization of Pascal's triangle. The numbers can
the j's. Using the abbreviations (27), we define thus be generated by means of (A3) and (AS); for

h '22 work with electronic computers, this would appear
U i2  is =fi (j.)-A l 2 more convenient than the more usual representation

\m, in ins \tn+ -s + of the squares of the normalized symbols as products
and ratios of powers of primes.'"' A more detailed

x ( 2x 2X j (Al) discussion of the symbols U is given elsewhere.
- m +" +" m1 "T. Regge, Nuovo C(imento 10, 545 (1958).
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The powers r, of the distance between two points specified by spherical polar coordinates relating to
two different origins, or of the modulus of the sum of three vectors, are expanded in spherical harmonics
of the angles. The radial factors satisfy simple partial differential equations, and can be expressed in
terms of Appell functions F 4, and Wigner or Gaunt's coefficients. In the overlap region, first discussed
by Buehler and Hirsclfelder, the expressions are valid for integer values of n > -1, but in the other
regions, for arbitrary n. For high orders of the harmonics, individually large terms in the overlap region
may have small resulting sums; as a consequence the two-center expansion is of limited usefulness for
the evaluation of molecular integrals. Expansions are also derived for the three-dimensional delta func-
tion within the overlap region, and for arbitrary functions f(r), valid outside that region.

1. INTRODUCTION defining V = 0 are kept parallel. If the coordinates

T HE inverse distance between two points Q1 and of 02 with respect to 01 are given by (r. = a, Os, (s),
Q2 specified by the polar coordinates (rP, #,, V,) expansions for the inverse distance in terms of

and (rl, ,62, 92) with respect to a common origin O, spherical harmonics of the angles have been given
is given by the well-known Laplace expansion in by Carlson and Rushbrooke, by Rose, and by
powers of r</r> and in terms of Legendre poly- Buehler and Hirschfelder.' - The precise form of
nomials of the mutual direction cosine (cos g12). the expressions depends on the specific definition
For powers other than the inverse first, analogous of the spherical harmonics; in the present context,
expansions exist either in powers of r</r> or in the most useful are the unnormalized forms
PI(cos ,912); in the former case the angular depend- e n - ) - e"'P "(cos ,9), (2a)
ence is given by Gegenbauer polynomials of (cos t912) 1;

in the latter case, the writer has shown in two fl7(69, () e"'PT(cos ,), (2b)
recent papers that the radial dependence can be
expressed by means of Gauss' hypergeometric and the normalized form
function' Y7(, p) = [(21 + 1)( - m)!/4r(I + M)U*

'~, ; y ; z ) X e,,").C O ) . (na))× (2 )
('~Y)uW Buehler and Hirschfelders consider in detail the

(s) = (a; w) - a(a+1) ... (a+u,'- 1) case w = 0 and put

*_ r(a + w)/r(). (1b) IQ.Q21- = .B(, 12, IMrn;r.,r., a)

In many physical problems, it is more convenient X @(9, l (.%, IN)

to epres the positiow of Q, and Q2 in spherical [l, f0, 1,..; -l< m _ l<;
polars about two different origins 01 and 0, in
such a way that the polar axes and the planes 1< = mi (1k, 1,)]. (3)

% Su in Part by Office of Naval Research Contract They have shown that the form of the radial funo-
Nonr-2121(01). This work was completed at the Theoretical
Chemistry Institute, University of Wisconsin, Madison, Wis- 'B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge
consin, supported by National Aeronautics and Space Ad- Phil. Soc. 46, 215 (1950).
mini-tration Grant N 27&62(4180). M. E. Rose, J. Math. and Physics 37, 215 (1958).

t Permanent address. 5 R. J. Buehler and J. 0. Hirachfelder, Phys. Rev., 83,
1 L. Gegenbauer, Wien. Sitxung. 70, 6, 434 (1874); 75, 891 628 (1951); 65, 149 (1952).

(1877). J. 0. Hirehelder, C. F. Curtim and F. B Bird Moiecu-
a . A. Sack, J. Math. Pys. S, 245 (1964); S, 252 (1964). lar TA wy of Gam andLiqi& (John Wilsy& Sons, fnc., Now

(Hereafter referred to as I and 14 resitively). York, 195).
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TWO-CENTER EXPANSION

tions B differs according to the relative values of
ri, r, and r, = a; there are, in fact, four distinct J
regions defined by the following inequalities [see
Fig. l(a)]:

So: Irl - rl <- r. _ rl + r,; S1 : rl _ r2 + r3, (4)

,: r2 2! rl + r,; 8: r, > rl + r2.

The same arguments apply to the more general
expansions for arbitrary values of the angle 0. and s.
of the power n of r.

r . [.R(n; L,, 1,, 1, MlI, n, M; rl, r2, r3)

X (5) S3 S,

if either of the definitions (2a) or (2c) is used for (a)
the spherical harmonics, the corresponding radial
functions differ from those in (5) by constants only; 'i

the subscripts 0 or Y are added to ,R in such cases. /
For the inverse first power n = - 1, the functions

R- R vanish in each of the "outer" regions
S, (i = 1, 2, 3) unless

1i + 4,Fl; 1. _>0 (s - 1, 2,3), (6a)

and

m, -+ m -+ m1 = 0, 1m. l (8=1,2,3); (6b)

throughout this paper, (i, I, k) denote permutations
of (1, 2, 3). If (6) is satisfied, R, consists of a
single term,

A - 2K,(-1; 1,, l , 4, m, m )r, 'r /r!, (7) ",

where the coefficients K, can be expressed in terms (
of Wigner coefficients3 ' or as ratios of factorials.' (b)

For the overlap region S., Buehler and Hirsch- FIG. 1. The four regions So, S1, S,, 8S and their boundaries.
felder" found an expression for B. as a double (a) as functions of rl and rs; (b) as functions of I and ,?.

power series in r,/a and r/a for which they tab- partial differential equations; they can be expressed
ulated the coefficients as ratios of integers for in terms of the Appell functions F,, which form a
0 < m < 11 < 4, < 3. They could not derive a generalization to two variables of the hypergeometric
generally valid formula in this region, though in function (1):
their later paper (second paper of Ref. 5) they

for the function B0. ~X 8
ogaVeha nto(rather cumbersome) generating function F,(a, $; 7," 7' ( ),').!! '  8

The aim of the present paper is to derive generally summed over all nonnegative values of u and v.
valid expressions for B0 or 2R, in all the regions; The theory of these functions is given in detail in
but for the sake of greater symmetry, the vector the monographs by Appell and Kamp6 de FRriet 7

.';
r == (r, 0, p) in (5) is to be understood to mean,not the vector QQ., i.e. r2 + r. - ri, but the vector 'P. Appell, "Sur les fonctions hyperg6ometriques de

luieursa varkihles" in AImorial des &iencis .llathemaaiques,
sum r + ri + ra; the corresponding radial functions 'ase, 3, (Gauthier-Villars, Paris, 1925).
.R differ only by the factor (-)".! As in I and 11, ' P . Appel] and J. Kamnpt de F(Iriet, Fonctions hyprpdo.

meiques et hypehrsphriques, Polyn Omes d' Hermite (Gauthier-
the functions are derived as solutions of sets of villm Paris, 1926).
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most of the relevant formulas are to be found in Furthermore, all the 2R are homogeneous functions
Chap. 5 of the Bateman Manuscript Project," but of the variables r. of degree n, and in the region S,
for the benefit of the reader, all the formulas utilized they are regular as ri and rh tend to zero; hence
in the present paper will be collected in the Appendix. they must be of the form
The differential equations do not involve the
azimuthal quantum numbers m, and hence the R. -r-Ir -r-hi-, G ,n, 1, m;r,/r,, rb/,), (12)
nature of the functions 2R does not depend on these where
numbers; they can only affect the leading coefficients.
In the outer regions, these constants can be de- G,(n, 1, m) f C C.(n, 1, m)(r1/r,) (r,/r,)'. (13)
termined from the results of I and II, and in the Substitution of (11) into (12) and (13) leads to
inner region S., indirectly, by means of certain the recurrence relations
linear relations between Appell functions along
critical lines. They can be expressed, as in II, (. + 2)(21, + ; + 3)C.s.,.(n)
by means of 3i-symbols, Wigner coefficients, or (v + 2)(21b + Y + 3)C,,.+2(n), (14)
integrals of triple products of spherical harmonics
(Gaunt's coefficients)."' - (n + 1 + 1, - Ii - 4 - p - z)

It is found that for n = - 1 the functions 2R H A
appear in the region S, with nonzero coefficients X (n - I, - Ii - 1k - Y - )C.,(n), (14b)
whenever = n(n + 1)C,,(n - 2). (14c)

1l - i,1 _ 4_< It + 4, 11 + 12 + 4s = even, (9) This defines G, as an Appel function F, in the

so that by confining attention to this case, it would variables
not be possible to determine the leading coefficients
in this region, unless at least one of Eqs. (6a) is = , f(
satisfied. In consequence, the general case (5) is G.(n, 1, m) K,(n, 1, m)FJ(A - in,
considered from the start; the resulting formulas
are valid for arbitrary values of n in the outer , i - in; I + 1, 4 + 1; Z, 1), (16)
regions, but in So only for integer n ! -1. The where we abbreviate
formulas obtained for 8,, S., and Ss can be put
into an operational form which permit generally A = 1(4 + 4 + 4), X, = A - 1.
valid expansions to be derived in these regions for
any function of r; this is done in Sec. 4. Within (# = 1, 2, 3). (17)
S., on the other hand, the Laplacean operator In view of (Ila) and (12), it is easily shown that
applied to the expansion for r does not vanish; the function G, satisfies the set of differential equa-
this gives an analogous expansion for the three- tions of Appell's function (A2) (see Appendix), with
dimensional Dirac delta function and its derivatives, the variables and parameters defined in (15)-(17).

2. MATHEMATICAL DERIVATION Hence, according to (A3), the complete set of solu-
tions satisfying the differential equations for

The functions r* satisfy the differential equation 2R(n, 1, mi) becomes

V,'()= V(r) = V =() - n(n + 1)r-', (10) =A _ _

which, when substituted into (5), yields i; 4; (1a)

e + -1 m) rm(+,/,,)"(1 /rj"F4 (A -in, X, - - ;
L r. a.r. rl. I.-ei/,~.r

- invariant (8 = 1, 2, 3), (Ila) f + I,, f + 4; 1, v), (18b)

= n(n + 1) .R(n - 2, 1, m). (lib) , " (r/rJ-"(r,/rJ74(XJ - in - 1,

'tema. Manuscript Prolect, Higin; Tra --ea -- 1 - i; - I,, I + 4; , ,), (18)
Fundio, edited Vr A. Erdhlyi (McGraw-ill Book Comn-

p yc.Nw yrk, 19). Formulas in this work e = , - in - I,aileyt re 6enced by tfw profix B. i
'Se Rd. 3-5 and 10 of II.
"J. A. Gaunt, Phil. Tram. Roy. Soc. A22, 157 (1929). #- 1 - I;| + it, - 4;, q). (I)
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Here the first subscript in notation 'I', indicates abbreviations (17), the constant K,(n, 1, m) in (16)
which radius r, occurs in the denominator of the is found, from (21)-(23) and (1),
definitions (15) for and ,, and the second subscript
shows that TI,,/r becomes singular as r, -* 0; K,(n, 1, m) H (1, + 1)(-in; A)(-1 - in; X,)
if t = 0, this ratio becomes singular, whichever (I; 1,)(j; Ib)
radius tends to zero. Further we denote the function i , (24)
2R in the region ,. by ,R. as in (12), and the X Inj ,. (2
coefficients of (18) in the expression for 2R. by K.,,: -m, -m -m,

The radial functions 2R in the outer regions are
, ,thus completely determined by (12), (16), and (24).

In view of (Al) the Appell functions in the outer The corresponding expressions in the overlap region

regions are convergent only if i = w, and the So can be obtained by means of the linear relation
(A8) between the four solutions (A3) of the dif-regularity of ,R, for small values of r, and r equires feetialeqais(A)othcrialinsA4

that the solution is of the form given by (12) and ferenta equations (A2) on the critical lines (A4)(16), t(see Fig. 1). These lines correspond exactly to the(16), boundaries Li separating the regions S, from So,

K,, - 0, t 0 i; K,,, - K,. (20) but the 1R. must be brought to a common set
ln the region So, the series are always divergent of variables before (A8) can be applied. In (18)
unles the trina; thesae alws ivre hiwe can transform I,,, on which 2Ri solely depends,
unless they terminate; in those cases in which (18) into a linear combination of *Id and *,. by means
leads to useful expansions, the choice of i is some- of (M), but the resulting series are in general
what arbitrary. The nature of the functions I, of ofvArge t The rltinses in gneal
(19) being known from (18), it remains to calculate divergent. The only cases in which (A6) leads toan expression which can be usefully interpreted
the coefficients K, and K oi,. without recourse to contour integration, are those

To determine K in S we provisionally combine in which the initial series terminates, i.e., where
ri + ri, to a vector (rik, t~j, (p&); then according or ft is a nonpositive integer; then (A6) shows
to (19) of I and the addition theorem for the a one of th site inte the v arb szosP1 (OO 12) (B .112)),we avethat one of the series in the new variables has zero

coefficient and the other terminates. Applying this

S [7 [- - ( ,)O(0, ) argument to the set (18), we find we can deal with
I. two Cases:

X ±)lF(l-.in,-J - In; I + 1;f (21) (A) n is a nonegative even integer; then r' is
G i 70 1 ) analytic throughout and can be represented by a

This expression involves rib only through the solid finite expansion common to all regions; the value
of i in (18) and (19) is immaterial, and the resulthr;boniac ors and trugh punose eend wrs. can be expressed in a form involving only positive

r' ; both factors are regular functions of ri and r,.poesftht.

If these products, in turn, are expanded in spherical powers of the .
harmonies of (%, poi) and (#,, pa), we see from (5) (B) n is an odd integer 1 -1; then

and (32)-(34) of II that the lowest power 2P which *i,, = Tiii;
contributes to terms for which 1, + l+ - I = 2X
occurs for Y - X, irrespective of n. We have, from T,, r(A - n)r(2 + in + x, + 2)"
(5) and (30) of 11,

Now since ,Ro = ,R. on L.(a = 1, 2, 3), the co-
~g&)..(-) ? . , 9) . efficients K,, in (19) can be determined from (24)

X (; 1 ] +MI 1 4 +and (A8) leading to
4; *m -m, -mj Koji - JK,, Koji =' JK. =J tlT.,(22) 4b Kb1 - KbT,(6

where I is Gaunt's coefficient" K22) K -- K(
Koo - -JK,

1 f - f P'()P7:(z)P7::(z) dr. (23) r(! + 1,)r(4 + ,)r(1 + in - )rQ + in - X,)
Im m? "J Xr(j - l,)r( - 4)r(2 + in + x,)r(j + is + A)'

If we put I - 1,, n - -j, ), - , and use the 27a)
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" (-)"' i+(g, + j) In the overlap region So, the expressions for R1'
are valid, according to the discussion of the previous

X (4; 1, -+- 1)(; 4 + 1) chapter, only if n is an integer > 1; two cases are
(1 + in; X, + 1)(1)+ ; A + l1 to be distinguished:

(A) n even >_ 0; then 2R is the same expression

S, i, in 4 (27b) in all four regions,

L-m, -M, -MJ A' = R -2 RA = R. (32)

The expression (27a) is meaningless (0. ) if (B) n odd _> -1; then according to (18), (19),
X, > j + in; nevertheless (27b) is valid for all (26), and (27),
values of I and m satisfying (6b) and (9); the result IR = I(R + 2R+A- + 2R) - i(-)"
could first be derived for n raised by a sufficiently (*; l)(1I; 4)
large even number for this difficulty to disappear, X 1 -+ n; X, + 1)(I + in; A + 1)
and then be extended by repeated application
of (11b). x F4(-i - in- A,

3. DISCUSSION OF RESULTS

Asin II, it is convenient to factorize the expression -1 - In - x; - l, I - l,; , (33)
for the functions 21 in (5) in the form Equations (31) and (33) show that for odd n those
9R(n, 1, m;ri, F., r,) functions which represent 2R' in the outer regions

2K'(l, m) 2R'(n, 1; % , r2, r.), (28) appear with half their coefficient in the overlap
region and vanish in the other outer regions; the

where the constant 2K' is independent of n and last term in (33), which is specific to So, could
the values of r. and comprises the complete depend- equally well be expressed in terms of Appell func-
ence on m. The selection preferred by the writer is tions with ri or rl in the denominator of the argu-

sK'(1, m) = (11 + 1)(12 + 1)(4 + 1) ments, the results being a polynomial in each case.

1 ,1, If the spherical harmonics in (5) are given in
1 (29) their normalized form (2c), the correspondingX I Mal I radial functions 2Rr factorize, in analogy to (28),

into functions 2R', which are the same as in (31)
where the 14 are Gaunt's coefficients" defined in and (33), and constants 2K.1 given, in view of (2)
(23), or if the unnormalized 3j symbols defined in and (29), (30),
(25) and (29) of II, and the abbreviations (17)
ar used, ,Kr = (-)-4w'(,, -n, I Y: 14, m.), (34a)

A! - 2r'[(21, + 1)(21, + 1)(24 + 1)?t
,K'(1, m) = 2(-)A (2A + 1)! [11 12 12 )11 12 1234

X . - . . + I , 1 , , 2 , 0 0 0

U( in term of integrals of products of three harmonc
X ~i l2 •i (30) over the unit sphere or of (normalized) 3j*-ymbols

-m -m, -msj [cf. (37), (38) and Ref. 10 of II.
The main application of the expresions derived

The second factor Jr in (28) differs according to Thmanapito fteexenosdrvdthe regiond Sator; in (8) "outereios aceobain,_ o in this paper is likely to be the evaluation of integralsthe region .; in the "outer" regions (,2 we obtain, for the interaction between two "charge" distribu-from (12), (16), (17), and (4), tions referred to different origins and interacting

,R'(n, 1; r,, ri, r) = (-)' with a negative power of the distance,

(-in A)(- (r) -&) in Q 1 r),r) r ~ (35)
G; I, + 1)( 4 + 1) ?rff QQ21

X F,(A - in, X, - i - in; 1, + 1, IfthefunctionsPareexpandedinsphericalharmoaics,

5. + 1; /rDr/r,). (31) p. - E W(., a.; rJ00:(d., $%), u - 1. 2, (36)
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the expansion for IQQ2j" is given by (5) and (28)- over 13, the writer has been able to reproduce and
(34), except for a factor (-)" in each term, as extend the list of coefficients tabulated by Buehler
discussed in the introduction and by Carlson and and Hirschfelder."
Rushbrooke.' The orthogonality of the functions The lack of an expansion for n < -1 valid
leads to straightforward integrations over the angles within So is a serious limitation to the applicability
for common values of 1, ml, 12, M 2, and the results of the method to molecular problems; it precludes
have to be summed over all compatible values of 4. its use for the evaluation of relativistic corrections
The spherical harmonics of 03 and p are best to Coulomb energies, for which n = -2, or of
left unnormalized, even if the expansion (36) is van der Waals energies (n = -6) for interpenetrat-
given in normalized harmonics; in particular, for ing or even closely approaching elongated distribu-
the case considered by Buehler and Hirschfelder," tions. The existence of expansions valid in So for
Oa = 0, we have 0 = 1 (M3 = 0), U = 0 (MI; # 0). fractional n appears doubtful because of the highly

For n - -1, the results in the outer regions have complicated branch points of the function 2R'
been known from previous work"; for other corresponding to the physical singularity at r = 0.
negative integer values of n and 0s = 0, an expansion On the other hand, if the relation
has been derived by Prigogine 2 by means of the
appropriate Gegenbauer polynomials,' which were
then reexpanded in terms of spherical harmonics; where 5' is the three-dimensional Dime delt% func-
the resulting expressions are valid in the region S3 tion, is applied to (37) and (38), an expansion for
only, though this limitation has not been noticed 53 is obtained, analogous to (5) and (28)-(33), with
by Prigogine. The complete analysis of the expan-
sions for general values of n and 03 = 0, which 2R(b, 1) = 0, i = 1, 2, 3, (40a)
implies a summation over l in (5), leads to expres- R(5,)
sions for the radial factors which involve more
complicated functions than the Appell polynomials (--)+1(2l, - 1)!! (21, - 1)!! (a) 01." + ( a -"
used in the present paper, and for this reason is - (2X3 - 1)!! 2 .-2A! \r/ V2a/

not discussed here.
The most important case considered is n X -1, F(-A, - X.; I - 11, J - I.; rf/a', r./a2).

for which we obtain, for 2R' in (31) and (33), (40b)

In contrast to (31) and (33), the functions 2R'() are
4(21, - 1)!! rIr & discontinuous along the boundaries L.; hence,

S(21i + 1)!l (24 + 1)!! r.!' 5, ,,,+ (37) although the Laplacean operator could, in turn, be(( 1applied to 5', any integral making use of such an

in agreement with previous work,S -" and for the expansion for V2 (63 ) would have to be supplemented
overlap region 8, by line integrals taken along the L,, and correspond-

ingly for higher derivatives.
R' = RAI + ,R' + R ) -(-)Even in such cases, where the complete expansion

(21, - 1)! (24 - 1)!! /(a\' (a\ ''a is known in So, its use for the numerical evaluation
(2X3 + 1)-2 (A 1)! - of integrals may give rise to considerable difficulties.

The joint degree in r, and r, of the terms in 2Ro,

"XF.(-1- A,-I- X3;t-- 11, w = -2- 11- +is-+Y, (41)

X 4 - l; r/a', r/a'), (38) may be positive as well as negative; on the other

where (2k)!! = 2"k, (2k - 1)!! = 2"(1), [cf. (43) hand, for large values of (r, + r2), the functions
of I]; the function F, in (38) represents a poly- cannot increase faster than with this sum raised
nomial of degree A + 1 in t and V, or 2(A + 1) to the nth power. Hence for it = -1, all those
in (r,/a) and (r,/a). By substituting (29), (30), and terms in a given 2R1 with a constant value of to > 0
(38) into (5) with the special value t, = 0, using must contain the factor (r, - r,)w+ ', which, inthe harmonice of (2) instead of , and summ0sing view of (4), remains bounded. If, therefore, anthe h o of itattempt is made to evaluate the integrals in (35)

n 1. . The Moect d Theeni of &olud (North- and (36) term by term over the expansions for 1/r
Holland Wibrahing Company, Amsterdam, 1957). in (12) and (13), we obtain repeated integrals of
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the form explicit formulas are not given by Fontana, and
for the reasons discussed at the end of See. 3 of II,

a" + V f r: +MWili, mi; r) dr the writer considers that the expansion involves
functions of greater complexity than those considered

X fr-'p 'W.(1., m.; r.)dr2, (42) in the present series of papers.
f More recently, Chiu" has derived some of the

results of this paper by means of irreducible tensor
with limits corresponding to the boundaries of u algebra. Chiu also considers cases for which theThese terms are likely to be largest for large AS functions depend on the angles of r2 -± r, - r
and iv, but add up to a small sum when summed fntosdpn nteage fr .- r
andrconstbut aus tof a , smal y su edng m e provided #a = 0; a complete analysis of such casesover constant values of wo, thereby reducing the would require the use of 6j-symbols and has been

accuracy of any numerical method employed. pur es e tho ued b y and writer.

To avoid this difficulty, we could first calculate purposely postponed by the writer.

,R.(- 1, 1) over a grid in So, and evaluate the AN E SION THEOREM FOR ARBITRARY
integrals by a suitable two-dimensional quadrature FUNCTIONS f(r)
formula. This is bound to be more cumbersome
than the repeated integration in (42), and also As in I and II, the formula (31) for the functions
necessitates knowledge of recurrence formulas by ,R, in the outer regions, though not (33) for 2R ,
which Ro can be computed for large 1 from values can be put in an operational form. For the factor
with small 1 without loss of accuracy; the writer in the general term of (31) and (8) which depends
has been unable to derive such recurrence formulas, on n, we obtain
not only those involving three functions as suggested (-n;A+u+v)(_-jn;X,+u nv)r-Z, -h - .

by Appell,"* but even numerically useful formulas
involving four or more terms. .1± .,1 / r, .".  (43)

The usefulness of the two-center expansion for 2i l 2 + +a / , \(,/
molecular integrals would thus appear limited to Hence if we expand any function 1(r) which can
the following special cases: be represented as a power series in r, we obtain in

(a) The expansion for pi and p2 only extend to 8, in analogy to (5), (28), and (29),
small values of 1, i.e., the dwrge distributions are
atomic (Coulomb integrals). For this case, other 2(r)- 1 [4'.,K'(1, in). fI n7:(-,, p.)], (44)
methods are available, but the present approach where
seems to be competitive in simplicity and efficiency.

(b) Compared with the distance rx = a, p, and f(1; r.)
P2 are sufficiently concentrated so that the integrand 4r,.dr zV1.+2
becomes negligible outside the region S.. In this -= .' ( (2)! (2,)
case, the two-center expansion is the most convenient +2u + 1)!! (24 +2v+ 1)!

method for the evaluation of the integrals; its X (45)
usefulness could be increased considerably by. i r, r,()] 4
numerical methods for the approximate evaluation or using modified spherical Bessel functions i,(z),
of small, but not negligible contributions from
the region 1S.. (1, - 4 \" 1 '(~38,i 1 rO8,

(c) The functions , and p, are of such a nature " ' rI - (Or,)
that the integrals over 8 o of their products with
the ,P1 can be evaluated analytically; this approach X [rJ(r,)]. (40)again necessitates the establishment of recurrence As in I and II, this expression factorizes if J(r)
relations, in this case for the integrals. For expon- is a spherical Bessel function,
ential functions p, this method is to be treated in
a separate paper. f(r) = wo(Kr), t = j, y, h)"; (47)

In a recent paper, Fontana" has sketched a then in view of (56)-(60) of I,
two-center expansion analogous to (27a) of I, which
is independent of the region Si, but introduces
powers of (4 + r + e) in the denominator. The '(K (48)

"P. R. Fontana, J. Math. Phys. 2, 825 (1961). y. N. Chiu, J. Math. Phy. (to be publihed).
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and for the modified Bessel function j(r) - io(Kr), coefficients on certain critical lines (Sec. 12 of
reference 8). For any function F, there exist at

2 fi =- i,.(Kro), (49a) least three critical lines"

and for the modified Bessel function of the second L,:e} + t = 1; L,: - 1

kind1(r) = ko(Kr), L: - 1, (A4)

(-)z(Kr)i,(Krk)k,,(Kr,. (49b) which form sections of a single parabola
e' - 2ti + v2 - 2t - 271 + I =f 0. (A5)

For jo and io, which are even functions of the
argument, the expansion is invariant on permuting For variations of t and I along L,, Appell has shown
(i, j, k) and is therefore also valid in S0 ; for the that Z =Z[, ,(t)] taken as a function of t satisfies
other Bessel functions, the writer has been unable a third-order ordinary differential equation, instead
to find the expression appropriate to S.. of a fourth-order one, as along an arbitrary line;

hence (A2) has only three linearly independent
ACKNOWLEDGMENTS solutions on L,. For the other lines, this dependence

The writer wishes to thank Professor J. 0. follows from the transformation (B 6.11.9),
Hirschfelder, Dr. M. J. M. Bernal, and Dr. Y. N. F,(a, P; ), I;t, j) - r(A)(o - a)

Chiu for stimulating discussions and advice. F"(, - a)r()

APPENDIX: PROPERTIES OF THE APPELL X F, a' + 1- ,;y, a + 1 - f._ I)
FUNCTIONS F, 17 1

Appell's function F, as defined in (8) represents + l(.)F(, - ) _,
a polynomial in t and ,j of degree ja or [,[ if a r(- - #)r(a)

or 6 is a nonpositive integer. In all other cases, X 14
F, is an infinite series which converges for values /,a,,, (A6)

and 1 such that and a corresponding transformation to (1/j, ,qft).
W + 1'- ,j' < 1; (Al) Appell has not explicitly stated the coefficientsrelating the functions (A3); the writer has been

for other values of the variables, the function c able to deduce them for restricted values of the

be defined in terms of contour integrals (cf. B 5.7.44 parameters only. Considering their behavior near

and B 5.8.9, 13). They satisfy the pair of differential (1, 0 n 1wseitht he funtions
equations (B 5.9.12), (1, 0) and (0, 1), we see that two of the functions

are singular in the vanishing variable, and two

Z + Z + a2Z analytic (for fractional values of y and 7'); regarded
-t2 t- 72 as functions of the other variable, they are essentially

+ (a 1) z hypergeometric series, and since (B 2.1.14)

+ ( -at+ 1)a,,) F(a, 9;y; 1) = r(T)r(7 - a - #)[r(y - a)

a'Z 8Z Z Z (A2) X F( - ), Re (7) > Re (a + p), (A7)
42 a 8 1 the only relation with constant coefficients which

This set has, in general, four linearly independent can hold on the line L. of (4) is
solutions (p. 52 of Ref. 8), r(I)r( ')
Zo 1 1-1 I-" ?(a + 2 - -f - y', r(i + ,y' - a - )r(,y + 1/' - 0 )Z

+2-- y; 2 -y, 2 - '; t, 7), + 4 "r(2 - y)r(2 -7') Z
Zr(1 -)r(1 - )

z, - F-74 (a + I - - , 0 + 1 - -; 2 - , -,; k, j), + -r Cy)r( - )

Z, - v'-"F,(a + 1 -7, + 1 --7'; -, 2 - ';, n); + (7-

(M) + r(2 - -fro Z .0, (S( )+ "r(71 - a)r(, - p)k
but the four independent solutions of systems such
as (A3) become linearly dependent with constant * P. Appel, J. Math& Pure. Appk, Ser. 810, 407 (1884).
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where Appell has also stated (p. 19 of Ref. 8) that
e.. - 1; ePd - -1, 8 t. (A) any three contiguous functions F, satisfy a linearThe precise form of (8) for the lines L, and L recurrence relation, a total of 28 equations, if only

follows from that for L, and (A6). On the other one parameter at a time changes by unity; but thehand, a more careful investigation of the behavior writer has been unable to find the complete set
of F(a, #; y; z) near x = 1 [(B 2.10.1)], shows that of such relations in the literature or to derive it,(W8) is correct only if all the series terminate which and he doubts the validity of Appell's statement.1
appear with nonvanishing coefficients; otherwise
terms of the form (1 - t)-- enter into (A8) 16 Professor A. Erd6lyi (private communication) has con-
which do not add up to zero. curred with this opinion.
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Rotation-Electronic Interaction in the Rydberg States of Diatomic Molecules* t
YING-NAN CHIULLaboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago, Illinois

(Received 29 April 1964)
The theoretical foundation of Hund's coupling cases for the interaction between rotation and electronicmotion is re-examined. The relationship between different cases is shown by angular-momentum couplingtechniques. Rotational interaction terms neglected in the Born-Oppenheime adiabatic type approximationand in the idealized Hund's cases are considered in particular. For application to Rydberg states, newand improved perturbed energy expressions of A doubling for spectroscopic use are derived up to the fourthorder for a near Hund's Case b' diatornic molecule and up to the second order for a near Hund's Case d'diatomic molecule. Specific formulas are given for the p-term (L - 1) and the d-term (L -2) complexes.For the approach towards cases intermediate between b' and d', secular determinants for this perturbationproblem are formulated starting both from ideal case b' and from ideal case d' using two parameters, in-stead of one, for the d-term complex. These two approaches are shown to give equivalent results provingthe consistency of the perturbations and assumptions used at both ends. The nature of these assumptionsas well as the physical basis for the transition between Case ' and Case d' are shown.

L INTRODUCTION rotation electronic interaction led to the study ofSINCE its formulation, the Born-Oppenheimer A doubling-' while the above consideration and that(B-0) separation' of nuclear and electronic of vibration-electronic (vibronic) interactions gave rise
motion has been a basis for the quantum-mechanical to isotope corrections in molecular spectra."'study of molecules of relatively heavy nuclei and for More recently, studies in the weak Interaction ofsubsequent developments in this area.' Although intro- neutral atoms12 in forming repulsive states and similarduced somewhat earlier,' the idealized Hund's coupling studies at large internuclear separation" have invokedcass were essentially based on the averageability over consideration of vibronic interactions and correctionselectro ic motion and the negligibility of some rotation- due- to relatively light nuclear masses. Studies of theelectronic interaction within the B-O separation frame- binding energy of H2 using an accurate electronicwork. As spectroscopic measurement technique ad- wavefunction 14 have called for considerations of rela-vances' and the high-speed computer calculation of tivistic effects. Studies of the fine structure of moleculeselectronic wavefunctions and energies improves' there have necessitated consideration of spin-orbit and spin-is an increasing demand for exactness in the inter- spin interactions.s.' Studies of high relative angularpretation of rotation, vibration, and their interaction velocity collision have required consideration ofwith electronic motion and for consideration of rela- rotation-electronic interaction."tivistic effects as well as spin interactions. Although Modern angular momentum coupling techniques,lm.isab initio nonadiabatic calculations including relativistic have made possible clearer understanding of rotationaleffects are available for the ground state of the hydrogen

moleule' fo moe cmple moeculs oe sill elis R R. de L. Kronig, Z. Physik 46, 814 (1927); 50, 34.7 (1928);
molecule,' for more complex molecules one still relies R. S. Mulliken and A. Christy, Phys. Rev. 38, 87 (1931); M. H.
on the B-O adiabatic approximation but as a compen- Hebb, ibid. 49, 610 (1936).

aeb E.ICUdJ. H Van Wek,19 Rv 3, 5)(92)sation takes into consideration the nonadiabatic inter- *E. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928).actions neglected in the separation of nuclear and elec- ' J. H. Van Vleck, J. Chem. Phys. 4, 327 (1936).tronic motion. Thus in the past, consideration of u V. A. Johnson, Phys. Rev. 60, 373 (1941).
2 T. Y. Wu and A. B. Bhatia, J. Chem. Phys. 24, 48 (1956);

This a work was suPorted bya grant from the National T.Y.Wuibid., p see also T. Y. Wu, R. L. Rosenberg and
Science Foundation NS GP 28Reearch. H. Sandstrom,'Ud Phys. 16, 432 (1960) for some corrections.t Pruented at de Symposium on Molecular Structure and "A. Dalgarno and R. McCarol, Proc. Roy. Soc. (London)
Spectroacopy, Columbus, Ohio, June 1964. A237, 383 (1956); A239, 413 (1957).Preset address: ertment of Chemistry, The Catholic - W. Kolos and L. Wolniewicx, Acta Phys. Polo. 2 , 129University of America, "as o (1961).A. Domn and J.. Oppe r, Ann. Physik K4, 457 (1927). a. Kovacs, Can. J. Phys. 36, 309 (1958); 3 329 (1958).M.fd D verad =B, .1  mei"~g Tby yof Crysl Laigices NP. R. Fontana, Phys. Rev. 125, 220 (1962).

ew York, 1954). 17 W. R. Thorson, J. Chem. Phys. 39, 1431 (1963).
'F. Hund. Z. Physik 36, 657 (1926); 41, 742 (192/); 42, 93 "J. H. Van Vleck, Rev. Mod. Phys. 23, 213 (1951).(1927). 

'" Note added in proof: It has come to the author's attention
. Hetzberga A. Mns J - ol. S t ..48 (1960); that, with a different application in view, N. Mustelin, in a thesis

W. Lichten, Phys. Rev. 12, 848 (1960); 126, 1020 (1962). entitled "On the Couplng of Angular Momenta in Diatomic
IW. Kolag and C. C. J. Roothan, Rev. Mod. Phys. 32, 219 Molecules with Applications to the Magnetic Hyperfne Struc-

(1960); B. &Rnoib. 32, 239 (1960); S. Fraga and B. J. ture" (1bo Akademni, .bo, Finland, October 1963), has developed
Raw Zal. Le. Phys. 37, 1112 (1962) and the intervening some interesting formalisms which in some aspects are parallel topaer oRansl dat 

the treatment here.
W. Kolos and I. Wolnewics, Rev. Mod. Phys. 3, 473 iteM. E. Rose, .Ekm ,ary Tkeory of Angltar Momentum (JohQ 4

(1963). 
Wiley & Sons, Inc., New York, 1961).
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z and to eliminate any 0, p dependence from the potential
energy expression, we use the molecular axis sys-
tems, '- shown in Fig. 1. If we introduce spin-dependent

U 1. I. Goldman and V. D. Krivchenkov, Problems in Quantum
Mecxnics (Pergamon Press, Ltd., London, 1961), pp. 207-211.

'4L. P. Landau and E. M. Lifshitz, Quantum Meckanics (Per-
gamon Press, Ltd., London, 1958), pp. 279-281.

- IR. de L. Kronig, Band Spectra and Molecular Structure
(Cambridge University Press, New York, 1930), pp. 8-14.

"This amounts to a unitary (orthogonal for the space part)
transformation that changes a set of space-fixed coordinates 0, ,
x., yi, si(i- I ... f), St... S3, to the following set of coordinates:

8:9, 0-0,
- -xi sin-+yi coso,

vi - -xi cose cos,-yi cose sin+zj sing,
FIG. 1. Transformation from fixed space axis (x, y, z) system ri-xi sint coso+yi sine sin#+zi cos,

to moving molecular axis.(4, % , ) system. (a , )a ...a ./a j , o/l-

interaction. Recent interest in Rydberg states of mole- Cor r oDS. .

interatin newpectintrsopic Rdergstateso make- where D is a transformation matrix for spin (see below). Viewedculesss and new spectroscopic measurements 1 
' make as a coordinate transformation the partial differentiations (Refs.

it worthwhile to derive more useful formulas for their 23, 25), involved are obvious and straightforward for the space
interpretation. The object of the present work is to part. For the spin part as we assume the spin wavefunction to be

entirely separable from the space wavefunction, it is easier to
derive such formulas and to show the usefulness of consider its transformation separately. To be able to use matrix
angular momentum coupling techniques (1) in ex- notation for this transformation it appears more pertinent to

consider D as a product of binary transformations S(e,; Sj) for
pressing the relationship between wavefunctions of the spin wavefunction which consists of spinors of Rank f (Ref.
different Hund's cases and (2) in treating the rota- 24, pp. 195-198, pp. 200-201) rather than to consider D as a
tional interaction near Hund's Case d'. product of'rotation matrices Di (e; Si) which is the transpose of

S(v,; S,) by definition (Ref. 19, pp. 67-72). Thus as far as the
II. BORN-OPPENHEIMER ADIABATIC spin wavefunction x transforms as Sx(S .. Si... S,), where

APPROXIMATION explicitly

For a diatomic molecule consisting of two nuclei of x(i .... .0 Sx(SI .... S)

masses H. and Mb and f electrons of mass m, the -1 1 S(or,; S,)x(Si ... S,..S)
Hamiltonian of motion (if we ignore the distinction aj-.,.b,

between the two centers of mass of the nuclei and the and the spin-dependent Hamiltonian 3C must transform as SDCS-'
to preserve the eigenvalues. With the coordinate system defined

molecule and discard the unquantized, uniform motion in Fig. 1, the Euler angles (Ref. 24, p. 201) relating the moving
of the center of mass) may be written as molecular axes to the fixed space system are the following: for

rotation around space fixed polar (z) axis the angle is O+r/2, for
A2 O 0\1A 5  .L rotation around the new axis (4) the angle is 0, for rotation around

1=- V? I V.,(r) the final new polar axis (r) the angle is zero. The corresponding
2 pr 8r\ 2m i rotation operator is'4 exp~ijrOjexp~ij9Jexp[ij.(O+r/2)]-

exp.ij(0+r/2)Jexp[ijAJ3. Instead of the lengthy Cayley-
+..n u.1 (r'" ri; r, 0, ), (1) Klein parameter method [Ref. 24 and E. P. Wigner, Group Theory

and Its Applicatiox to the Quantum Mechanics of Atomic Spectra
where p=M.Mb/(M+Mb), r is the internuclear dis- (Academic Press Inc., New York, 1959), pp. 158-160] we intro-

duce Pauli matrices (Ref. 24, p. 191) for the angular momentumtance, and V.,.(r) = (zA) /r. The term V°., ..o, corn- operators j. and j to get directly for k fI ... f

prises the ordinary electron-electron and electron-- s audi tlf
nuclear Coulomb potentials, where 0, p are the polar (a-i; Sk)
and azimuth angles specifying the orientation of the =-exp[J (1+_ /2)] expji
figure ax"is (namely the molecular axis coincident with 0-1 0
the vector r= r-r) with respect to a set of space-fixed losl isin rexp[ji(0+r/2)J 0 r
axes originating from the center of mass. In spherical \isnl i expj(+'/2)
polar coordinates, R, the total angular momentum sn s e 1'
operator for the rigid rotation of the nuclei exclusive _(cosifexp[Ji(,+r/2)3 isinitexp[-ii(#+r/2) ,

of the electrons, is defined by (isinjsexp~i(o+v/2) ] cosfjftxp[-Ji(#+r/2) ),

SiO . a" t o] where T denotes the transpose operation on the matrices. The
R'= - - sin- + - (2) partial differentiation of the space part, followed by differentiat.-

sin9 00~ 86 sin'6 2 ing S and matrix multiplication then (Ref. 25, p. 13) gives, for
example,

As it is advantageous to express electronic coordi- So/*),oS-.,[o/e],,,,_i(L+-) /89m.-ipt,
nates relative to the moving molecular axis (figure axis) where sp and molec denote partial differentiations with space or

molecular coordinates fixed, respectively. This shows that if we
'4R. S. Mulliken, J. Am. Chem. Soc. 86, 3183 (1964). want the wavefunction to have spin associated with the molecular
1 K. P. Huber, Helv. Phys. Acta 34, 929 (1961); K. P. Huber axis system (see text.) then due to their equivalent properties

and E. Miescher, ibid. 36, 257 (1963). under rotation, spin (e.g., 3() and orbital angular momentum
31 (a) J. W. C. Johns and G. Heraberg (to be published). (b) come out together automatically as equal dynamical partners

M. Ginter (to be published), exerting similar gyroscopic effects.
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ROTATION-ELECTRONIC INTERACTION

interactions W(Sj), then3C=ll+W(S), where W(Si) function as follows2,' 110:
may still be referred either to the fixed space axes (in
Latin alphabet) or to the moving molecular axes 'I'(orlu,; r,0, €) = ' r)F,(r, 0, 9), (5)
(in Greek alphabet) through a similarity transforma-
tion SW(Si)S- 1= W'(j). Depending on whether the where 0.(, r)a i,;(-,id; r)x,(a,) satisfies the
effect of electron spin on molecular motion is weak or Schr6dinger equation for electronic motion
strong we have the final spin Hamiltonian referred to

either the space or molecular coordinates, respectively. H.4,= [- (t 2/2m) "Vq2+ V,, . r)
The corresponding wavefunctions will naturally have i
spin coordinates referred to the same sets of axes,
namely for a weak effect we have the total (nuclear +W'( i)] ,=U,(r),,, (6)
plus electronic) wavefunction in the form of 41(l,1i S i ;
r, 0, p) which aside from other necessary assumptions and n stands for the assembly of quantum numbers
leads to the spin condition for Hund's Case 7 b and for a involved (see below). Substitution of (5) into (6),
strong effect we have ''(Lt'ilir ; r, 0, (p) which leads to yields the Schr'odinger equation for nuclear motion, viz.,
Hund's Cases a or c.2,28

For the strong spin effect case, the Hamiltonian in [H...,+ U,(r) +C,.-E]F,(r, 0, s)
the molecular axis system after appropriate spin trans-
formations is the following.u,": - (7)

X= - 1r- +cot0~aio ) _ipc)2 where F,. willifurther be decomposed into R. (r)e,(; ,and C,,, = f,, *H,'iodr *"drf.

If we neglect the nondiagonal matrix elements of C
._ 0.i 0 )2] on the right-hand side we get essentially the adiabatic

s- p sinP-icos)J Born approximation as an improvement over the
original Born-Oppenheimer approximation.' The ne-

fA2  
20' 02 a2 glected off-diagonal matrix elements then are treated

m -+ as perturbations.Such a consideration of the diagonal term alone is
tantamount to a one-term expansion of I, in (5).

+V.,,(r)+ I/, ( , ;r)+SW(Si)S-, (3) Because of the axial electric field pertaining to a
diatomic molecule, we may assume the projection f0

where Pj= Lj+S1= J-(Lq+ Sit) is the 4 component of the total electronic angular momentum (including
of the total electronic (orbital and spin) angular spin) on the figure axis (S] being the eigenvalue of Pr)
momentum. 9 For a weak spin effect, we have L, in- to be quantized. Assuming the nuclear rotational
stead of P, and W(Sj) instead of SW(Si) S-1. wavefunction to be that of a symmetric top with the

To consider the separation of nuclear motion we use angular momentum along the symmetry axis equal to
Eq. (3) and include the spin motion in the electronic 9,nA we then have
part. The Schrbdinger equation from (3) may then be
abbreviated as Jo(,i740,', ; r, , ,)

"C' = (H,.,c+H.)*(Z.1iti,; r, 9, p) = L*. (4) = o(. 4d'0',; r) F,..JMG(r, 0, P)

If the complete set of electronic wavefunctions is ( ,r ,.(r)On'(9) em', (8)
available the total wavefunction in (4) may be ex- where it denotes the assembly of electronic quantum
panded as a product of nuclear and electronic wave- numbers other than . Substitution of (8) into (3)

yields, aside from the Schr6dinger equation for elec-
SNG. Herzbr, of oi aoa a MoV lecular struNurra. . tronic motion already given in (6), the followingSpectra of Diaki Modeculea (D. Van Nostrand Company,

Princeton, New Jersey, 1950), pp. 219-226.
0 Kovacs (Ref. 15) expressed his spin-orbit interaction opera- A. Fr6man, J. Chem. Phys. .36, 1490 (1962).

tors in a molecular axis system (Case a) hence his expansion of "W. R. Thorson, J. Chem. Phys. 34, 1744 (1961).
Case b wavefunctions in terms of Case a wavefunctions for the "Note, however, our definition of the electronic and nuclear
subsequent evaluation of matrix elements. Fontana," however Hamiltonian is different from that of Refs. 30 and 6. The sepa-
expressed his spin-orbit and spin-spin interaction in the fixed ration of electronic and nuclear wavefunctions following the
space axs system (Cae b) and expressed his Case b wavefunc- separation of the Hamiltonian is somewhat arbitrary. By giving a
tions in terms of space-fixed spin wavefunctions by angular- different meaning to the set of wavefunctions, one does no more
momentum coupling, than attribute a new but consstent set of meanings to the spec-

TM~slonqas .- ZL+LS Z(4+S)-L4+s.-Zd 1  troscopic atates. After =vrpae perturbation wxe taken into
no d of R andj coupling need be account the final reult ofthe me y and wavwunction should be
made bwa. the sOM
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equationt, for nuclear motion: and the eigenfunction may be formally identified to be

-F1 .I n ). the rotation matrix," aside from a normalization
-2-A S ZO _O(SinO) _a constant

Ls -in co (9)
W/\lJOiM9p = [(2 J+l 1 87w]1'e"dm-'(O)0Wl2, (12)

and where J, may be set to zero. 3 7 Such identification

rf' a(a\. facilitates the calculation of matrix elements using
-2 c r/a+ U"(r) standard angular momentum methods 35  without

recourse to explicit forms of Jacobi polynomials. The
+Wmt(r) +C.,-EjR.,,ra(r) =0. (10) detailed form of the operator C,,o consists of two parts:

Equation (9) is the differential equation of a sym- (13)
metric top with eigenvaluesm

= (/2ur) [J(J- 1) -fW], (11) The expression of H1 may be shown to be3

1 A' /a 0I a ct6 ~ -)
2 r4e'IO + cot0P +-! ) (- sP,-iP)ine a-j) (- P,+iP,) + two similar terms

obtained by interchanging the contents of the first and second parenthesis in each of the above terms]

-- -B(r) [JP_+ J+P++P-J-+ P+J+]=-B(r) [JP_+ J+P+], (14)

n H. Eyring, J. Walter, and G. Kimball, Quantum Chemistry Fig. 1). But the designation of t, il is arbitrary for practical pur-
(John Wiley & Sons, New York, 1944), pp. 260-261. poses. The coordinate system of Fig. 1 is more convenient for our

NA. R. Edmonds, Angular Momentum in Quantum Mechanics earlier reductions involving spin variables. The primed coordi-
(Princeton University Press, Princeton, New Jersey, 1957), pp. nate system here gives meamng to (14) more directly. In this
8, 55. Note although the definition of Euler angles is different system the angular momentum operators are, from the trans-
here, it is irrelevant in this connection. Note also the rotation formation of coordinates (Ref. 19, p. 50; p. 65),
matrix here is the complex conjuate of that defined in Ref. 19.

*In Fig. 1 and Footnote 26, although we have tacitly used the 8s a _\
Euler angle definitions and coordinate systems consistent with J6'- -i sin,-+co, cot0----
those of Landau and Lifshitz,2 Kronig, Van Vleck,' and Gold- 4V sing a
man (Ref. 23, p. 208), where the second Euler angle # is generated
by rotation with respect to the new x axis instead of the y axis, it -1, _ 5in# 8
should be recognized that rotation of the first Euler angle by JM - -s cot--+ -- ,
#+v/2 here to a new z axis Q) is equivalent to rotation by 4 o sn /
to a new y axis (coincident with j here). With this recognition, ,
0, and 1 are consistent with the definition of Euler angles of Rose 3, -(8/8).
(Ref. 19, p. 50), Edmonds,34 and Wigner," where the angle 0 is From the above, the abnormal commutation rule' Jr,Jj-JjJr,-
generated by rotation with respect to the new y axis. Also #, 0 -iJ,, immediately follows. Under such an abnormal commutation
are easily seen to be the usual azimuth and polar angle of the rule which differs from the normal one by the sign on the right-
vector r in spherical polar coordinates. hand ide, the matrix elements (OT I I J* 10) are equivalent to

N Reference 34, p. 55;pp. 64-67. the matrix elements (:lF I I J+ fl) for normal commutation
37 See Ref. 34, p. 62 and Ref. 19, p. 55 and p. 75. If 4, is retained rules. (See, for example, Ref. 18, Ref. 19, pp. 24-27.) With this

the factor exp (A*) is redundant as it also occurs in the dec- information the derivation of (14) and part of (15) may be
tronic wavefunction. But as far as evaluation of matrix elements easily perceived as follows. Starting from (1) we recognize that
over rotational wavefunctions is concerned, if the proper nor- R2 is a scalar invariant under coordinate transformation and may
malization constant (2r)-' for 0 is included, this redundancy is be expressed in any coordinate system. In the moving coordinate
no handicap. Because vector or tensor operators*N [Ref. 24, pp. system
296-298] on decomposition into products using the rotational
transformation of Fig. 1 always contains the same * dependence (h/2O')Rt-B(r)R-B(J-P)2-B[J'-J'P-P'J+Pl]
in the ectzok and rotational parts, thus no emhefasing occa-
sion ever arises when the selection rule for the electroinic part "B[($-2JrPj+PjA)

contradicts that of the rotational part for the same operator. It
is perhaps more sagacious to use electronic coordinate systems
(such as the elliptical coordinate system) so that 1P is an inde- + (pu +p )3
pendent variable and exp(if*) may be factored out and absorbed
into the rotational wavefunction. = B<J3-Pr2> -B(J+'P-+PJ+'+P+J_'+J_'P+)

aL. Y. Chow Chiu, J. Chem. Phys. 40, 2276 (1964); see also
Y.-N. Chiu, J. Math. Phys. 5, 283 (1964). +B(Prt+P* )]

N See Ref. 23, pp. 218-220 for derivation of the ladder operators *B[J(J+1) -IP]-JB (JP_+J+P++PJ_+P+J+)
J-t- in terms of moving molecular coordinates. However, Gold-
man's Euler angles are defined differently compared with ours +B (Pe+Po),
[Ref. 35 and our Eq. (12)]. With our definition of Euler angles
we shall denote the right-handed moving axes system by /'i'(, where P*P,-*iP,- -P,*k-iP 1 and the first term corresponds
The primed coordinate system is of greater generality, being the to the symmetric-top eigenvalue. The second term corresponds
same as that of Rose,N hence our choke of this. For *=0, we to (14) with already converted to follow normal commuta-
bve (--, 9'-t, -r and P-P.; P ,-P. Pt-Pr (an tiourules, (0:k I J. 10)-E(J:+)(J*-O+l)J3.
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ROTATION-ELECTRONIC INTERACTION

so that clearly H, has no matrix elements diagonal in
the electronic quantum number 0l or A.

The expression of H may be shown by inspection" Fio. 2. Spin decoupling from
and differentiation to be Hn' aeat omH~~Case b.

H,=2'; ( ,2+ 2 0 2 2r' R(r) 1
2- Pr Or R'(r) Or Or

(15) in our many-term expansion (5) we delete the sum

We are interested in second- and higher-order pertur- over f0 on the right-hand side and add S0, A, X to the
bation splitting of the degenerate (with respect to A:-A) quantum numbers of the final state on the left to read
energy values of the system40 due to the off-diagonal in,.Jmaz as in (8).
perturbation matrix element of H, which we rewrite as In Hund's Case b the electron spin S expressed with

respect to the space coordinate system is not coupled
[H1]., (nvlJ I HI nv''J)-Ha(0; fl') to the figure axis, and hence has no well-defined pro-

jection along it. Therefore, we use (8) but with A in
= A2 R*. ja(r)DmuJ*0*.jnB(r) the place of 0 and with an additional quantum number

N=A+R to read tS.JMNA.
In such an idealized picture we are looking at Case b

X (J-P-+ J+P+) Rwn,,(r) as resulting from Case a through spin uncoupling. The
XDJ'm,0.,g,ridr sin~d0dpdVdr .. "drf, (16) difference in Cases b and a then lies in the presence in

the latter of the gyroscopic effect of spin treated as a

where A is the normalization constant for Dia- in dynamical coordinate having transformation properties
Eq. (12). Upon integration over the rotational wave- similar to that of the space coordinates. Such a treat-
functions one immediately obtains3 ' for 0'= (- ment of spin is consistent with the classical relativistic

consideration which among other terms also gives rise
- (nvJ IBP I n'v'0fl J)[(J Q+1) (J=fl)]1, (17) to the magnetic interactions W(Si) [see Eq. (3)]

used in connection with Hund's Case c.U
or The purely gyroscopic effect of spin may be expressed

( J Ias -2BJ-S coming from -2BJ.P= -2BJ-(L+S).
- 2BP, ln'v'--1J )[(J~+ 1) (J~F)]. (18) As such it is held responsible for the rotational distor-

This matrix element was first given by Van Vleck* tion of spin multiplets for Hund's cases between a and
using wavefunctions in the form of Jacobi polynomials b."0 As the perturbation similar to (14) omitted in
Van Vleck also made the pure precession assumption the separation of the wave equation, it is held responsible
equivalent to a united-atom model for the electronic for the expansion of Case b wavefunctions in terms of
state of a diatomic molecule. In this model the elec- those of Case a after solving the secular equation.1s "
tronic angular momentum (L) is well defined. With On the other hand, instead of solving secular equations
this and the assumption of equal r( = ro) for initial and to find eigenfunctions, the decoupling of spin from Case
final states (17) becomes, neglecting spin a may be viewed as the coupling of J with the inverse i

spin vector S'= -S to give an angular momentum
-B[(L=FA)(L-+A+I)]i[(NEA)(N:tA+I)]I, (19) vector N (Fig. 2), which is conserved in Case b.

Writing N=J+(-S) and omitting vibration and
where Be=A2/2zro2. other irrelevant quantum numbers, we get the wave-

m. HUND'S COUPLING CASES FOR THE INTERACTION function in N representation (i.e., Case b) as a linear
OF ROTATION AND ELECTRONIC MOTION combination of Case a wavefunctions, using angular-

momentum coupling with the figure axis as the quan-
In Hund's Case a, the electron spin a, expressed in tization axis,

the molecular coordinate system is intimately connected
with molecular motion and has a well-defined pro- *.rMNA(Eq4-.S,; n, ,o)
jection Z along the figure axis. This, together with the
well-defined projection A of electronic orbital angular ' (20)
momentum, constitutes U=A+l which is a good Z,quantum number characterizing the state. Therefore,

rs Inclusion of spin as a dynamical coordinate will give (i) the
The degeneracy of the symmetric-top eigenvalue is obvious copic effect of spinil on molecular motion manifested in Eq.

from (11). For degeneracy of the electronic energy, see Ref. 35, (3) and(ii) magnetic interactions W(Sj), which consist of spin-
p. 202. rotational, spin-own-orbit, spin-other-orbit and spin-spin

u Reference 9, pp. 47&-480. Note in the normalization of interactions.
Jacobi polynomials m Van Vleck's Eq. (16), there appears to be 11 Reference 24, pp. 288-289; Ref. 25, pp. 47-48.
a misprint of the factorial sign; namely, (1+d+S+2#)l should MR. Schlapp, Phys. Rev. 3, 806 (1932), especially pp. 811-
reai +d+S+2p). See also Re. 34, pp. 58-62. 812.
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where Z'= - Z; ma(/t,4qi; r)R.,,o(r)AD a/, and may be obtained from the angular momentum coupling
the C's are Clebsch-Gordan (vector coupling) coeffi- of L and S. Thus we have for Case c [see Eq. (5)
dents.0 Using (20), we have obtained" wavefunctions and (20)]
essentially equivalent to those of Kovacs" except for
the over-all signs of some states (i.e., ' states) *m1sro(Md,,v; r, 0, V)
due to different definitions. Our Eq. (20) is perfectly
general and may be used for any multiplet states. The I ,WLsi C(LSj; AZO) *ioXsz
phase convention as obtained from Clebsch-Gordan L z

coefficients is naturally a consistent one. =AJ , WLJsC(LSj; AXQ)O ('+'Ao)R..,Dmg-, (21)
In Hund's Case c, the spin-orbit interaction is strong L z

compared with the spin-axis and the electrostatic
orbit-axis interactions. As a consequence the projections where the summation over LS characterized by the
A and Z of L and S, respectively, on the figure axis are coefficient WLaii will eventually lead to the 1-i-type
not separately defined. Instead, the projection 0 of the coupling representation if spin-orbit interaction is very
angular momentum J(=L+S) is a good quantum large.
number. Thus in the wave equation (3) we should As a very special example, if L is defined we consider
formally use J1 in place of Pt However, in the subse- a p-term (L= 1) electron, we have the relationship
quent reduction to a symmetric top Eq. (9), the between a state of Case c (withj= = , 0 = ) and states
properties of J as manifested through its projection of Case a as follows, namely, neglecting the sum over
fl are the same as those of Case a. The angular momen- L and S in W:
tum J, if approximately defined in an idealized case, *IJMIA{C(11 j; 1,-j, D)('II)
hence is an internal electronic property and may be
absorbed into the quantum number x, making it un- +C(lQ j ; 0,1, J)#(1Zi) R.j'DMI'. (22)
necessary to specify Russell-Saunders or j-j coupling
in (3) as noted in Footnote 29. The contents inside the curly brackets constitute the

With the introduction of spin-orbit interaction in electronic wavefunction of Case c in terms of those of
the Hamiltonian, spin is not separately a good quantum Case a.
number; the L- S or Russell-Saunders representation The spin multiplicity is still assumed to be preserved.
is inadequate. When the spin-orbit interaction is large This is, of course, the extreme, idealized case which may
but not vfry large we have the j representation which be obtained as the j representation merely from the

consideration of commuting operators. The size of
4 See Ref. 19, Chap. M and p. 225 for the table of Clebsch- spin-orbit interaction need not appear in the coefficient.

Gordan coefficients necessary for a triplet state.
0 As an example for a 51 state translated into Kovacs notation For intermediate cases, first-order mixing coefficients

our (20) for Case b N-J_-l reads will then depend on the size of the spin-orbit inter-
action parameter A. An example may be found in Eq.

, , - (56) of Van Vleck' for the A doubling of a sHi state
-ZC(J, 1, . -1-; ,Z, +l)#(O)RrUja intermediate between Cases a and c, obtained by the

3superposition of spin-orbit perturbation on rotational
*N., -#('liJk') perturbation.

-ZC(J, 1, Jdl; -0, +Z, -1)4(lL)R.vU._., For Hund's Case d, L and S are both decoupled from2 the figure axis and are approximately defined while A
where Ujo corresponds to our A Duam and and Z are no longer valid quantum numbers. We

#(fla) -.*(Aj wir; 0 therefore sum over A in the many-term expansion (5)to give the representation of Case d wavefunctions in
is a Case a wavefunction. The two Clebech-Gordan coefficients te of those of Case b, or neglecting the coupling of
for i states are equal in magnitude and sign. Adding and sub- spin for the time being
tracting the above two equations Yieldsspnfrteimbig

.,(M .,,*) - / -4E#(M ,'- ):ok:'-) +* *I. " W~ ve d ' ; r. , )

which s to he compiwed with Kovacs results. For N-J states,
the two Cfelac-Godaa coefficients in the expansons for --0 =AFC/,.vLAtivSi;r )R.LVNADmAN. (23)
and -0 states are of equal magnitude but opposite signs, it is A
necesarytodefine As DmAN represents the eigenfunction of angular

, ( - - t/W P (8nA-+1) =F (MjA-)3 momentum N and 0,LA represents the eigenfunction
to agree with Kovacs results. This shows that to be consistent of angular momentum L, (23) may be viewed as the
one should consider Kovacs expression belonging to the 'II* coupling of N and L'(= -L) to form R (see Fig. 3)state as that belonging to the MD., state, only so will the expres- and the
sim on both sides of the equation give the samo eigenvalue adnthe exnsion coefficient Cm, may be formally
under inversion, identified to be C(NLR; A, -A, 0). We discuss this
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case (also known as Case d' according to Mulliken) in state. To derive these higher-order energies, we use
detail in Sec. VI. the more concise expressions given by Dalgarno' which

are equivalent to the more general expressions of
IV. ROTATIONAL PERTURBATIONS OP IDEAL HUND'S Condon and Shortley."

For Case b (and Case b' when spin is neglected) we
For the rotational perturbation (A doubling) near give the general perturbed energy formulas including

Hund's Case b, the basic off-diagonal matrix element electronic, rotational, and their interaction energy, but
Hi(A; A: 1) of Eq. (16) was evaluated by Van Vleck.' neglecting vibrational energy as follows:
For higher (2Ath) order A doubling, the matrix ele-
ment Hi(A)(A; -A) connecting doubly degenerate Al state: EA+B[N(N+1) -A'+ (Pa?,)+ (P,')M]
states of -+A was also given by Van Vleck.

As the off-diagonal matrix element HI(A; -A) +tHjOu)(A;A)+H W(A;-A), (24)
which governs the A doubling width [C= 2H,(A; -A)] + -1
is of 2Ath order,$ for A= 2 it appears also necessary to
consider the diagonal matrix elements HI(A; A) up to where EA is the electronic energy for a stationary
the fourth order. Due to the selection rule of Hi, the molecule with a Rydberg electron in a A state, the
third-order energy vanishes. We give the energy up to average of P'+ P,' over the electronic wavefunction
the fourth order for A, H, and Z states. Thorson," in a comes from Eq. (15), and P is set to L for Case b'.
study of high-energy, high-angular velocity scattering, The master formula for the 4th order (a=2) energy,
has also considered the fourth-order energy for the Z by the selection rule of H1, and in our notation reads

H10 (A; A) = E F,' Hi(A; A')H,(A'; A")H,(A"; A.')H 1(A.'; A)

At Al Al/ E(AA') E(AA") E(AA..)

E, 1:, Hi(A; A')H,(A'; A)Hi(A; A")HI(A"; A)

A' A" [E(A, A') 12E(AA") (25)

where the primes on the summation signs indicate that none of the summation indices A', A", or A" may be

equal to + A. The definition of the energy separation is E(AA') = EA- EA. The summation over the other elec-

tronic quantum number n and the vibrational quantum number v is omitted for brevity and we are to understand
that H1(A; A') -H1 (nvA; n'v'A').

When the matrix elements in (24) are evaluated over the rotational wavefunctions [see Eq. (18)], we have

the following energy expressions up to the fourth order for A, II, Z states (A= 2, 1, 0). For A= 2 (the Ak states):

E&*~=EA+B[N(N+ 1) - 21+ (Ple)4(PT, -] +4[BP 0) (N-2) (N+3) ±4[BP(AH) 2(N'- 1) (N+2)}

4 j4[BP.(AlI) ](N- 1) (N+2) [4[BP,(llZ) JN(N+ 1) 4[BP,(A) J'(N- 1) (N+2) ]
CE(AII) ]I I E(AX) E(ATI) i

+ 16[(BP,(AP) ]{BPv(tI) ]2(N-2) (N+3) (N-3) (N+4)

EE(A)]2E16[BP,(AI ) 12( (N_2)'(N+3 ) ,[E(At)]'

- [BE(,A) ]'EBP,(A) (N- 2) (N+3) (N-i) (N+2)[E(Af) ],E(An)

16[BP(AII) ]'[BP(A"),]' (N -1) (N+ 2) (N -2) (N+ 3)

16[BP,(AI) ]'[BP,(IIZ) ](N- 1) (N+ 1) (N+ 2)(N
] [E(AII) ]2E( AX) (26)

47 Quantum Tkwry, edited by D. R. Bates (Academic Press Inc., New York, 1961), Vol. I, p. 182.
, E. U. Condon and Q. H. Shortley, The Tkory of MAw Spcsra (Cambridge University Press, New York, 1933), pp. 3"5.
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where the first curly bracket with N dependence up to the second order represents second-order effects, the second
and third curly brackets represents fourth-order effects, and the last curly bracket with =1 sign represents A-
doubling effects. For A= 1 (the IT* states):

En*= En+E[N(N+ 1) - I+ (Pe)hw+ (PI,')AuJ+ 4[BP,,(nA) ](N-1) (N+2) + 4 [BPV(lz)JSN(N+ 1)1
I E(UA) E(IIZ)

+±{16BP,(1A 4XP.A) 32'(N-1) (N+2) (N-2) (N±3)

EEIL& [E(11Az)J'M

[E(11A 11 EE(TlI )

while for A=O0 (the M+ state):

Ez+= Ez±B[N(N+1) +(P 1
2 ).+ (P*')A]+ {8 B .(z) ]TN(N+ 1)}

+{[32[BZ) ]'BP(A) T (N-1)N(N+1) (N+2) -64[.BP.(211) T N2(N+l) 2}, (28)

where we have arbitrarily chosen the Z state of the Rydberg electron in question to be Z* by assuming a Z core.
In (28) we have also assumed the degeneracy of =1A states in the energy denominators. The =L signs in (26) and
(27) are to be read consistently for the A-doubling states, while the term BP,(A; A-+I) is defined as in (18).
With the assumption of pure precession' [see also Sec. VII for discussions and Eqs. (18) and (19) for matrix
elements of Pj] x= n' and v= Vwe have the following specific formulas:

Specific formula for L = 2,

4A state: EA+=EA+BEN(N+1) -2]

+402[(' I-] 48B(N-1) (N) (N+ 1) N+2) 16B(N- 1)2(N+2)2
+-[( N+ ) -2+ E(411) ]E(AZ) [E(MIMJ

A-state: Ei-= EA+B[N(N+1) -2+~ 4B2[N(N+1) -2]- 16B'(N- I)2(N+2)'

4B2 12B'N(N+1) 16B 4(N-)(N+2)2
1+ state: En+= En+BEN(N+1) +4]-E -N(N+1) -2+ - +

E(M) .E(IZ) EE(AI)]'

36B4N'(N+ 1)224B,(N 1)N(N+ 1) (N+2)1 { +1
[En~lIE])'(UZ) [E1Z]E1AJ

U-sat: n-En+[((N I)+4]--41EN(N+ 1)2] 16E4(N 12N 22
11 ~ ~ ~ E(H state: ET nB((N1

36B'NA'(N+1)' -24.B(N-1) N(N+ 1) (N+2) { I~l)JEfZ +En) 1JEfl)1
CE(flZ) ]' 1E1AE1Z E1Z]E1AJ

12'N(N+1) 24B4 (N-I)N(N+1) (N+2) 144B4N(N+1)s
Z' state: Ez+-Ez+B[N(N+1)+6]-E}Z + +EX)1(A 4.EIZ_ (29)
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Specific formulas for L= 1

4B2(N) (N±I) 4B'N2(N+I)'

11-state: En+=En+B[N(N+1)]- E(II) N) If-stae: n-fi~n BC(N+)'] CE(IIZ)] '

4B'N(N-+-1) 16B'N'(N+ 1)2
E+ state: Ez+-Ez+B[N(N+)-2]- E(H ) + 1-E(I )2 (30)

E(IIZ) [E(IIZ)7J' (30

V. CASE b APPROACH TO INTERMEDIATE STATES off-diagonal matrix element (over rotation-electronic
BETWEEN CASES b AND d wavefunctions) for the operator" A cos'a which we

For cases intermediate between b and d, approaches rewrite as A (Nr. L) 2, where Nr is the unit vector along
from both ends exist in the literature" (see below), the figure axis. In a stationary Case b diatomic molecule,
To characterize the energy of an electronic state of a the average of this operator, of course, reduces to A A2,

given A, both of these approaches make use of a single where A is the projection of L on Nr. We show (Sec.
parameter A that represents the magnitude with which VI) that this operator merely corresponds to the first
the electronic orbital motion is coupled to the figure contribution term of an infinite multipole expansion,
axis. Our work represents a remedy for the inadequacy and is clearly an inadequate representation of the whole
of the one-parameter approach. situation.

In an approach from Case b, Kovacs and Budo" used We choose to use energy parameters. Such use of
the following diagonal matrix element for a state of energy as a parameter has also been made previouslymA

quantum number A: in a Case b approach. We define

AA2+B[N(N+I)-A'+L(L+I)-As], (31) ZmEz,

where AA s takes the place of EA of our Eq. (24), and IHmE,-Ez--E(IIZ), n'I/B,
L(L+1) -As comes from the average over P'+-P,' AssEA-Ezm-E(AZ), A'lA/B,
after using the pure precession assumption and neglect- YwA-ll - EA-E,, v'fmv/B. (32)
ing the spin. This makes the above formula actually
represent Case b'. Such use of one parameter A aside For a d-term complex (L = 2) of a Rydberg electron
from a constant shift of energy levels is equivalent to with a Z core (neglecting spin), the 5X5 secular
the first-order perturbation treatment given by Hund' determinant factors into a 2X2 and a 3X3 secular
(see also Sec. VI) and is not justified for term com- determinant equation, each involves the mixing of
plexes of L>2. states of the same Kronig reflection (a,) symmetry

In an approach from Case d, Dieke" following Hill "-+" or "-." For the "-" states the two-by-two
and Van Vleck" computed the explicit diagonal and secular equation reads

A-I v+BEN(N+1) -2]-w -2B[(N+2) (N-I)]'(
=0, (33)

11--2B[(N+2)(N-1)] BEN(N+I)+4]-w =

where A-, f1-at extreme left labels the states involved, w= E- En and B& = Bn = B. The solution of this quadratic
equation immediately yields

Ea-= En+B v'/2+N(N+ 1) + 1+[(2N+ 1)2+ (V')2/4- 3v']Ij,

En-= Eu+Bf{v'/2+N(N+ 1) + 1 - (2N+ 1)2+ (V') /4-3w']ij. (33a)

* I. Kovacs and A. Budo, Hung. Act& Phys. 1, No. 4, 1 (1949).
* See F. Hund, Z. Physik 63, 719 (1930); where the first-order energy reads -a2K(L1+L-3A*).
C. H. Dieke, Z. Physik $7, 71 (1929).
E. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928); pp. 267-272.

* Matrix elements for this operator lmay also be computed by the angular momentum coupling techniques such as those in (i)
Landau and Uiahits, Re(. 24, p. 105 sad p. 295; (ii) M. E. Rose, Ref. 19, p. 117.
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Analytic formulas same as (33a) may be obtained from the Case d' approach (Sec. VI). This is because we
have used the pure precession assumption in the evaluation of the off-diagonal matrix element HI(4-; II-) =
J[HI(+2; +1)+Hi(-2; -1)] and in the evaluation of the part of the diagonal matrix element that involves L,
namely (Pj1),',+ (P,1),A. For the "+" state the three by three secular equation with state labels reads

4+ A+B[N(N+I)-2]-w' -2B[(N- 1) (.N+2)] 0

Hl+  -2B[(N-1)(N+2)]l fI+B[N(N+I)+4]-w' -2B[3N(N+1) ]i =0, (34)

Z+  0 -2B[3N(N+1)]' B[N(N+I)+6]-w'

where w'= E-Ez. While this 3X3 symmetric secular equation may be solved numerically by standard computer
methods, after the fashion of Kovacs and Budo, 5 we consider it helpful to give explicit series solutions in terms
of the over-all B's. Thus"

EA+111+8 + b 3b 3 .,3/In-i b .

E++=B + N(N+I) +1) 2a8a 2n n-la&O - "

3 a 2nn-

___=__&+H+__ (+I b +3b'+ 3 IEz
l 3a 28a 8a 3 , 2n n-i b"

where the binomial coefficient

n (1-) lm! (34a)

and

a= (B2/6) [A'"H+"+" 2- (12v'+4f'+ 16A') +32-24(2N+ 1)]

b= (BI/27) {[v"- 12,'-45+9(2N+ 1) ][lI - (A'+H') ]+[Ir -41'-23+ 27 (2N+ 1)']

X[(v'+A')-14]+[A'-16A'+64]-(H'--v')+4]j. (35)

VI. ROTATIONAL PERTURBATIONS OF IDEAL HUND'S turn N of the system is simply the resultant of the
CASE d' AND CASE d' APPROACH TO INTERMEDIATE

STATES electron orbital angular momentum L and the nuclear
orbital angular momentum R, the latter coming from

The A-doubling effect near Hund's Case d was first the rigid rotation of the bare nuclei. Conversely R is
considered by Hill and Van Vleck'2 and subsequently the difference of N and L. In terms of the standard
by Dieke1 both using one parameter A to represent notation for vector coupling of angular momenta (Fig.
the magnitude of coupling of orbital motion to the 3) we have R=N-L=N+L', where L' is the negative
figure axis. As an improvement, we use energy as a of L and has the signs of its components reversed corn-
parameter and develop a formalism that permits the pared with the latter. More explicitly we rewrite (23)
use of any necessary number of parameters.

Neglecting spin for the time being, we consider
Hund's Case d' and assume the orbital angular momen-
tum L of the Rydberg electron to be completely de- .
coupled from the figure axis. In other words, the core Fio. 3. L decoupling from
potential is assumed to have a spherical symmetry and Hund's Case b to form Hund's
Ll commutes with the Hamiltonian to make L a good f Case d.
quantum number. In this case the total angular momen-

'41. Kovacs and S. Sinher, Physik. Z. 4, 362 (1942). -
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to read (36) for L= I (see below), and then comparing results.
When converted to an operator in the position space of

'I'ao= C(N, L', R; A, -A, O)DNAL'.-A, (36) the electron as above, the coupling perturbation of
A.-L,, Van Vleck A (L.Nr)I is suggestive of the electrostatic

where we have omitted the vibrational wavefunction nature of such perturbation, In fact if we consider a
R.,,A and other irrelevant quantum numbers. 4'IR,o is united atom6" model as representative of Hund's Case d,
the wavefunction for the rigid rotation of nuclei. Since the axial perturbation on the spherically symmetric
R, the nuclear orbital angular momentum, is perpen- field due to the separation of nuclei is the following
dicular to the figure a is, the former naturally has zero (21) multipole-type potential expansion for a (linear)
component along the latter. C is the vector coupling distribution of (two) charges (Z. and Zb), where Z
(Clebsch-Gordan) coefficient. 5 From Eq. (12), and Zb may be considered to be the effective positive

D.A=[(2N+1)/8 ]iDjtr. charge of the partially shielded nuclei."5

is the normalized wavefunction for a symmetric top Hp=e Z.+ Z b

expressed in terms of Euler angles. OLA is the normalized I P

electronic wavefunction expressed with respect to the Pk (cosO)
moving molecular coordinate axes. [Z (P<) k+ ()kZb(p<) k+1 (40)

A perturbation that causes Hund's Case d to deviate k-0

towards Case b also causes L to be more coupled to Here p< and p> are the larger or the smaller of p and
the figure axis. In other words, the core potential R/2, R is the separation between the nuclei a and b
deviates from a spherical symmetry towards an axial [denoted as r in Eqs. (1)-(10)], and p is the position
symmetry. Such coupling with the figure (Nr) axis vector of the Rydberg electron which perceives this
was expressed by Hill and Van Vleck6" as perturbing potential. As the spherical harmonics with

odd k will yield19 a vanishing Clebsch-Gordan coeffi-
A ((L.Nt)') A A. (37) cient C(LkL; 000) when evaluated over any two

The square of A then accounts for the --+A double rotation-electronic states with the same good quantum
degeneracy in a stationary molecule. However, we can number L in a first order perturbation theory, only
also view the above in a different manner. Because of term with even k remain. The first contributing term
equivalent transformation properties" of the angular for L#0 has k= 2 which is precisely of the form of the
momentum vector and the position vector of an elec- coupling perturbation term in (55) that gives rise to
tron, the matrix elements of these operators are equiva- A (L.Nr)l or AA2 dependence. More precisely the
lent except for a proportionality constant. For this to dependence up to R1 of the perturbed energy can be
be valid, one expresses the operator in irreducible shown? to be, for L#O, coming from the k= 2 term in
spherical tensor form, namely, the expansion for p> R/2, namely,

Z,,Z 1I\L(L+1)[3A'-L(L+)I)]R,
A'[3(L.Nr)'-L1i]=A'[3Lr-L'] (38a) AE= Z- (LI)L(L+I)(L+)

= A'[3 cos'9, 3-1], (38b) (Z 0+Zb) '(2L-1)L(L+1)(2L+3)

where 01. is the angle between L and the unit vector A'[3A-L(L+1)1, (41)

(Nr) along the figure axis. Eq. (38b) may be shown to which is equivalent to the formula given by Hund"
be equivalent to for an approximate one-electron state (without elec

tron-electron interaction) in the orbital approximation
-JiA'[3cos'6,-1]=-MA'P2(cos,.), (39) of a many-electron molecule ab. Here A is assumed

where 0,. is the angle between the electron position to be a function dependent on the principal quantum

vector @ and Nt and differs from 8, by r/2 as e is number of the united-atom orbital n, the orbital

perpendicular to L=VXP. The proportionality con- angular momentum quantum number L and inter-

stant can be gotten simply by evaluating the first nuclear separation R but independent of A. For a

operator (38) in Hill and Van Vleck's fomlism (with hydrogenlike orbital

their j=N, j,=R and their k=L=1) and evaluating A'= 2ZZb(Z.+Zb) 2  R2 (41a)
the second operator (39) over our wavefunctions in aenL(L+l) (2L-l)(2L+l)(2 L+3 )R"

0 For the algebraic expressions of C involving L up to 2, see From (37) and (38) it is seen that 3A'= A.
E. U. Condon and G. It. Shortley, Ref. 48, p.76-78, or JC. Wh ca gf multi-
Slater Quantum Theory of Atomic Structure ( cGraw-Hill k With increasing separation of R, higher-order
Company, Inc., New York, 1960), Vol. 1, pp. 92-94. However, poles and higher-order perturbation theory will give
note a misprint here in the expression (in Slater's notation) for
S-2, J-L--2, M.-O inside the square root (L+M+I) should "W. A. Bingel, J. Chem. Phys. 30, 1250 (1959); see also P. M.
read (L+M-1). For L-3, see D. L. Falkoff, G. S. Collakay, Morse and E. C. Stuekelberg, Phys. Rev. 33, 932 (1929).
and R. E. Sells, Can. J. Phys. 30, 253 (1952). 0 For the H, molecule this corresponds to a demi-H + core for a

N V. Heine, Group' Theory in Qualum Mechanics (Pergamon H, Rydberg MO. See R. S. Muiliken, Ref. 20. The charge dis-
Press, New York, 1960), p. 152. tribution, of course, must have cylndrical symmetry.
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rise to the other powers of R dependence. When higher We have noted that the perturbations (40) are
orders are included, the total effect is manifested in the diagon, in A. If we apply these perturbations to our
electronic energy expression Case d wavefunctions (36), we have, from the ortho-

normal property of DA the following nonvanishing
OAHOA= &. (41b) matrix elements":

L
AR=0;,,oHp a,o= F IC(NLR; A-AO) Is EA,

A-L

L

AR= -4-2; 4g,0HPjI+2'0 Fe- C(NLR; A-AO) C(NLR-=-2; A-AO) EA. (42)
A-L

From these nonvanishing matrix elements, we have the general formula for a state of given R up to the second
order:

[H,(R;R+2)]' [H,(R; R-2)j'
ER= BR(R+ 1) +H,(R; R)+ + R

E(R; R+2) E(R; R-2)

[H,(R; R+2)]' [H,(R; R-2)(4
B[4R+6] B[4R-2] (43)

More explicitly we write the state wavefunction (36) for the p-term complex (L= 1) as

R N ;*+o= N DNI0.+ N+I TDv.00[ N DN.-10L.-1,

R = N; ''N,o = [QI'DN .1L,- [4QDN,-iL,-i,

- I N+I D N D N+I 1'
R= -i;'PN 1,o 2(2N±Ij -DNIL1FN+lj -.L, 12 (2N+ 1)] D.1L~. (4

Using the definition of energy parameters (32), the energies ER's for the above states up to the second order
are then:

R=N+I state: B(N+I)(N+2)+H,(N+I;N+I)+ [H(N+;N-1)' fl+,BE'4N'+2]

R=N state: BN(N+I)+H,(N;N)--H-,

R=N-1 state: B(N-1)(N)+H,(N-1;N-1)- [H(N-I)(N+I' Z+,  (45)B[4N+2]

where the matrix elements are

H,(N+I; N+1) +Z,

H,(N; N) =11+Z,

H,(N-1; N-i) N +Z,

, l)]=N(N+)u.(6

[H,(N+1; N-1)Y= [,(N-,; N N+I) Us (46)

and the arrow indicates the correlationi to the states of Case b [Eq. (30)] for a Z core.

*Off-diagonal matrix elements for AR-*-1 can be shown to be zero from the properties of the Clebsch-Gordan coefficients
(Ref. 19, p. 38 and p. 42). We write

L

*a.II,*att.t- Z C(NLR; -A, +A, 0) C(NLR-1; -A, +A, O) E-A
A-

L

+C(NLR; 000)C(NLR-4l; 000) E.+Z C(NLR; A, -A, 0)C(NLR-I, A, -A, 0)EA.

Bemuse E -L-, on changing the signs of A the first term cancels the last term. The second term vanishes became one of
the sum eiter (N+L+R) or (N+L+R*I) must be odd and the corresponding Clebsch-Gordan coefficient for this is ro.
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In the above formulas use has been made of the the parameter Ez by letting W'= E- Ez as was doneorthonormal condition of the Clebsch-Gordan coeffi- in (34), we see that the secular equation obtained bycients to separate one energy parameter Ez(=Z) using the matrix elements of (46)which is later eliminated on the diagonal by being jH(absorbed into the energy variable " of the secular J R; R')- I=0 R'=R, R-2 (47)equation. Thus for a p-term complex (L= 1) we need is identical to that of Hill and Van Vleck,' 0.u with theironly one parameter (number of parameters is equal A=E,-Ez=n, a conclusion wholly consistent withthe number of A's in the summation that ranges from (41) and (41a).A= 1 to L or L in number), for a d-term complex The energies ER's for the five states of a d-term(L = 2) we need two parameters, etc. After eliminating complex (L =2) up to the second order are the following

R=N+2 state: B(N+2) (N+3)+H 1 (N+2; N+2)+ [H,(N+2; N)]2

B[4N+61

R=N+I state: B(N+I) (N+2)+H,(N+I; N+I)- [H,(N+1; N-i)]'
BE4N+2]

R=N state: BN(N+I)+H,(N;N) [H,(N; N+2)]2 [H,(N; N-2)]2
B[4N+6] + B[4N-2]

R=N-lstate: B(N-1)(N)+H,(N-;N-i) [H,(N-1;N+I)]'
B[4N+2]

R=N-2state: B(N-2)(N-i)+Hp(N-2;N-2) -Hp(N-2;N)]'
B[4N-2] :Z+' (48)

where the matrix elements are

H,(N+2; N+2) = N(N-1) 2N(N+2)2(2N+1) (2N+3) (2N+ 1) (2N+3)
... (N - -1) , ( NT+ 2 )

H,(N+1; N+1) = . A+ (2 -fl+,(2N+i) (2N+ I
HpN;N)=3 (N-I) (N+ 2) A3

(2N-1) (2N+3) +( 2N-) (2N+ 3 ) n +Z '

H,(N-1; N-1) m N+2 A N-1 I+Z,

2N+1I 2N+ I
H,(N-2;N-2) m (N+1) (N+ 2) A+- 2 (N-1) (N+l1) +Z,.

2(2N-1) (2N+1) (2N-1) (2N+l)"---'

[H,(N+2; N) '= [H,(N; N+2)]2= 3N(N+2) [(N-)A+2n]2,2(2N-1) (2N+1) (2N+3)2

[H,(N+I; N-1)J'= [H,(N-1; N+1)]'=2 1) (N+2) An.s
[H,(N; N-2)J1= CH,(N-2;N)_T= 3(N-i)(N+) [(N+2)A-2n], (49)

2(2N+ 1) (2N-;,.3) (2N - 1) ( 2

and the arrows in (48) indicate the correlationOM to 4(E,-Ez) =4A. This last assumption of course stemsthe states uf Case b [Eq. (29)] with a 2 core. from one parameter energy expression Ea= AAs whichTo investigate cases intermediate between b and d is precisely what we try to avoid. Our 5X5 secularfrom the Case d approach, we again form a secular equation easily factors into a 2X2 secular equationequation similar to (47). This secular equation can be involving the mixing of R=N+1 and R=N-i statesreduced to Dieke's secular equation1 which was ob- which corresponds to the mixing of II- and S- statestained from Hill and Van Vleck's one-parameter for- in Case b; and a 3X3 secular equation involving themalismm if we make the assumption that &-Ez- mixing of R-N+2, R-N, and R-N-2 states which
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corresponds to the mixing of A+, fl+, and 2+ states of Case b. The 3X3 secular equation is too complicated
to warrant a series solution similar to that of (34)-(35). The 2X2 secular equation with appropriate label-
ing of R with W'= E= Ez, namely,

R=N+ N-I N+2 , [(N-1)(N+2)(A n)-=+ A+ .- +B(±1) (N+2) -lV', 2+
2N+1I 2.V+ I 2N+ I

= 0, (50)
R=N-1 [(V- 1) (N+2)] Y+2 N-,

2N+ (A-11), + 2-fl+- B(N-1)N-IV'
2N+ 1 2+ 1 2N+ 1I

though very different in form from the secular equation be necessary to distinguish Bz, B,, Bz,,..., etc., and
(33) obtained by the Case b approach with pure pre- to reassess the magnetic dipole"0 matrix element
cession assumption, may be easily shown to yield (A I Ly I Ad:-1) which does not take the simple form
solutions identical to (33a). The equivalence of our (19). This operator in spherical polar or in Eular
present Case d approach to the Case b approach to- angles,39 or in elliptical coordinates"' is to be evaluated
wards intermediate states then demonstrates the con- over accurate electronic wavefunctions of molecular
sistency of theoretical basis of the two cases and the states in the appropriate coordinate systems. In the
correctness of perturbations involved in the transition pure precession treatment with equal n's and L's, we
between them. are considering a rotational perturbation within the

VII. CONCLUDING REMARKS same term complex, for example, the matrix element
- (3do0 I 2BLy 3dr), whereas the only known mag-

We have developed, in Secs. IV, V, and VI, energy netic dipole matrix element for a real molecule appears
formulas for near ideal Cases b' and d' as well as for to be that of (lsa, I L I 3dir0 ) of H2+ calculated by
intermediate cases. For near Case b' and for the Case b' Dalgarno and McCarroll.12 For complex molecules and
approach to intermediate states we have made use of for other molecular states the calculation at present is
Van Vleck's pure precession assumption9 to evaluate not practical because of the lack of accurate wave-
the electronic matrix element, 2BL, [See Eq. (19)]. functions.
Strictly speaking, these formulas then are applicable In the treatment of Hund's Cases b' and d', we have
only to nonpenetrating Rydberg orbitals of relatively neglected electron spin and its coupling to the figure
high n. We write the electronic term energy of a axis. Such decoupling of spin is especially justified for
Rydberg state as follows: Rydberg states of high n where the spin-orbit inter-

) = TR~Z,/11*2 =RZcj/(nl6)2, (51) action of the spin of the Rydberg electron of a 1Z core
with its own orbit, is small. This is because the inter-

where R, is the Rydberg constant, Z. charge of the action is proportional to (l/p) which in a central
core, 6 is the quantum defect and U.(r) comes from field approximation and with hydrogen-like atomic
Eq. (6) when the latter is written as a self-consistent wavefunction becomes Z'/[n3L(L+ ) (L+ 1)], where
field Schrddinger equation with core potential for a Z will be small in a united-atom approximation for
single Rydberg electron. For large n and consequently relatively light molecules. The consequence of the above
small magnitude of Ut(r) the perturbation is signifi- is of course the Case b representation. When spin is
cant. In these orbitals of large n, furthermore if the included for a Rydberg electron with a doublet core,
orbitals are nonpenetrating, the electron position vector we have singlet and triplet states each forming a sepa-
p becomes consistently large, the core potential (40) rate Rydberg series. In that case, the difference in the
loses its multipole character and appears as a spherically space part of the singlet and the triplet states, as well
symmetric charge distribution to the electron. In this as other refinements on the electronic state such as
spherical central potential, the angular momentum L electron correlation, magnetic interactions will be mani-
is defined and the 2, II, A states have nearly equal fested in the electronic matrix element of 2B/,. In the
O's which are close to the united atom n value, event of having made the pure precession assumption,

When the rotational quantum number N is large, these electronic properties will then be absorbed into
the rotational interaction [see Eqs. (26)-(28) for its 0 See J. H. Van Vleck, Astrophys. J. 80, 161 (1934) for a dis-
dependence on N) will be large enough to decouple L cussion and for some selection rules.
from the figure axis, and the limiting formulas for "The operators L., L, and L, in elliptical coordinates were

given by Dalgarno and McCarroll" and also by Kolos andperturbation near Hund's Case d are normally appli- Wvolniewicz.4
cable. However, for penetrating Rydberg orbitals and a A. Dalgarno and R. McCarroll, Proc. Phys. Soc. (London)

for low N's where the pure precession assumption is A70, 502 (1957). The selection rule of Anx-2 and AL=2 may be
viewed as coming indirectly from the perturbation P:(cos*)/Ip onnot adequate, we have to go to near Case b and it may the united atom [see Eq. (40)].
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the effective spectroscopic constant B. As a last remark, helpful suggestions and discussions, Dr. L. Y. Chow
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ELECTRIC QUADRUPOLE AND MAGNETIC DIPOLE RADIATION IN LINEAR MOLECULES.

APPLICATIONS TO il _3n TRANSITIONS.

Ying-Nan Chiut
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Department of Physics, University of Chicago

Chicago, Illinois 60637

ABSTRACT

The electric quadrupole and magnetic dipole operators of a rotating, linear

molecule interacting with a radiation field are formulated, in the space-fixed and in

the molecular coordinate systems, as contractions of irreducible spherical tensors.

Radiative transition probabilities are obtained for the initial and final rotation-

electronic states that are in Hund's coupling case a or b, using the normalized rota-

tion matrix as the separated rotational wavefunction in the Born-Oppenheimer approxi-

mation. Line strength formulas are derived for (1) transitions between singlet case b

states, in the case of an electric quadrupole, the IY -1 , l 1 1, 1 I 1N H 1 R,

1A -in, 1 -in.. 1 A  1&, 1 -'A, and lP - A transitions; in the case of a magnetic dipole,

the l n_-lP, 1I -III, 'A _1l1, 1A 1 A and 10 1A transitions (2) the 1, -3n(a) transitions

(3) the 1 1 3 n( ) transitions. The master line strength formula as well as intensity

distribution for different branches are given. In (2) and (3), some of the transitions

are found to be dependent on the absolute Kr~nig reflection symmetry, giving, for mole-

cules of unequal nuclei, an intensity alternation for the two A-doubling components.

A discussion of this reflection symmetry and the inversion symmetry is given and a con-

sistent set of molecular wavefunctions of a given symmetry is constructed for (1)

singlet case b states and triplet case a states (2) triplet case b states expressed as

linear combination of case a state wavefunctions through angular momentum coupling.

The rotation-vibration spectra due to these higher multipole radiations are briefly

discussed. A new view for the possibility of AA = 0 (for A 0 0) magnetic-dipole pure

rotation spectra is advanced.
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I.. INTRODUCTION

The relatively "forbidden"higher multipole transitions are of interest in

planetary and stellar spectra I and in molecular spectra where the electric dipole transi-

tion moment vanishes because of symmetry. Early theoretical work ranges from the magne-

tic dipole interpretation 2 of the atmospheric bands of oxygen to the calculation of the

intensity distribution of the electric quadrupole rotation-vibration spectra3 of H2 in

its ground electronic state. More recent experimental works of Wilkinson and Mulliken 4

and Wilkinson et al. 5 make it worthwhile to pursue further studies in this area. The

theoretical line strength formulas we shall derive for diatomic molecules are equally

valid for rotating, linear, polyatomic molecules when the interactions between rotation

and vibration are not considered.

II. ELECTRIC QUADRUPOLE RADIATION

For a system of interacting charged particles such as the electrons and nuclei

in a molecule, the Einstein spontaneous quadrupole emission probability An --n' for the

transition from a state n to a state n' may be written as
3 '6

327r
6 V5 ZM ZM' iZQ(nM;n'M') 

1 2

A, n 5 hc5 gn

where is the electric quadrupole tensor for the it h charged particle, the summation

index M ranges through the gn degenerate levels of the n state, and the other symbols

have their usual meaning. If we consider only the degeneracy of the rotational levels

explicitly, the line strength S(J,J') may be defined in terms of the quadrupole

1G. Herzberg, Astrophys. J. _8, 428 (1938).
2 J. H. Van Vleck, Astrophys. J. 80, 161 (1934).

3 H. M. James and A. S. Coolidge, Astrophys. J. a, 438 (1938). Note here, I, J, and K

stand for the molecular axes instead of the space axes.

4P. 0. Wilkinson and R. S. Mulliken, Astrophys. J. 126, 120 (1957).

5 p. 0. Wilkinson, Communication with Professor R. S. Mulliken. 1f -1 Z and 31 -I11

transitions in N2 . See also Vanderslice, Wilkinson and Tilford, J. Chem. Phys. (to be
published).

6 E. C. Kemble, "The Fundamental Principles of Quantum Mechanics", Dover Publications

Inc. (1958) pp. 462-469.
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transition moment as follows:

S(J,J') = ,M ZM, I, (JM;JM,)12 , (2)

where the indices M and M' range through the 2J+l and 2J'+l degeneracies of the initial

and final states respectively.

The quadrupole tensor Z may be referred to an arbitrary space-fixed axis system

(. K or to the molecular axis system (D E. n). Should Cartesian basid be used,

Ig 2 represents the sum of the squares of the nine components of Q. This has been the

conventional treatment3 ,6 we chose to express Q in the spherical basis7 for the easier

evaluation of the matrix elements. II 2 then represents the sum of the squares of the

five independent components of the quadrupole tensor. In the molecular coordinate

system8 the electric quadrupole tensor of James and Collidge3 may be written in the

spherical basis as a contraction of irreducible tensors as follows:

zi 3= 2 E> Z ei T x(*ir(iDi a,)

= (2/3) Z ZX iei T (ili~i)D 2 )

x (2/3) T*(;I )

where ei is the charge of the it h particle, T2X is the X
t h component of the irreducible

spherical tensor of the second rank;7 in terms of the spherical harmonics on a unit

91
sphere,9 T2x= (Ji/5) Y2x; the components ( 2/3); T* (IJ K), are mutually orthonormal

in as much as the unit vectors I J K are orthonormal when one takes their mutual scalar

products. is the rotation matrix 7 of the second rank and qe, are the Euler

angles through which one rotates the space-fixed axis system to the molecular axis

7M. E. Rose, Elementary Theory of Angular Momentum, John Wiley and Sons, New York (1957).

81n the space-fixed axis system Zi = ie3T 22( xiyiz)T (i "). Upon an inverse

rotation to express the space coordinates (xyz) in terms of the molecular coordinates

(e1IC), the above ecoes D (2) e and

is equivalent to the expression in (3) because (see Ref. 7, P. 54) ;(- -O-) --
D2*

9Explicitly T20(a b c) = If-aa - bb + 2cc),

T2, 1 (a b c) = ;(3/8) [(so + ca) * i(bc + cb)],

T2 , 2 2(a b c) = (3 / 8 )1 [as - bb * i(ab + ba)].
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system. We take as a generalized, initial state wavefunction
1 l 11

Ti = (2J+I/8?2) 2 .AA0nvA D*(,9p') , (4a)

and final state wavefunction

f (2J'+i/8Tr2) A'bA,$n,vAM, , (4b)

(See below for the reasons of taking a linear combination with summation indices A and

A') and make use of the following formula for the integration, over Euler angles,
12 of

the product of three rotation matrices,

[(2J+l (2J'+l) P JDM'A' D2* D dgsineded* = (+) C(J2J';AXA') C(J2J';YiM')
8W2

where C is the Clebsch-Gordan vector-coupling coefficient.
7  We then get from Eqs.

(2)-(3) the line strength
2

S(J'') 2(2J+)) M , [ AZ J A,aAbA, (n' v A I Q2 X In v A) C ( J 2 J , ;AXA , l 2(J2J1; PM 1M )

S(JJ') = 2 M

3 [Z A 1ZAaAbA(nv1AI 2XnvA) C(J2J';AXA')] , (5)

where the superscript, 2, on C denotes the square of the Clebsch-Gordan coefficient,

QX = Ziei T2,(riOiY). v is the vibrational quantum number, n stands for the assembly

of electronic quantum numbers other than A, (n'v'A'IQ 2,lnvA) stands for the vibronic

matrix element over vibrational and electronic wavefunctions. In singlet states of

Hund's coupling case b13 A stands for the projection of the total electronic orbital

angular momentum along the molecular figure axis (nC). In the event that we must con-

sider the Kronig reflection symmetry, (see below) of the initi~l or final state wave-

function, the summation over the electronic quantum number A may be taken simply to

mean that for A 0 0, A assumes the values of +A and -A and adA = b*a = . 114F. In

states of Hund's coupling case a. A is set to fl which is the projection of electronic

orbital and spin angular momentum along the figure axis.
14 For a non-singlet case b

10 L. Y. Chow Chiu, J. Chem. Phys. AR, 2276 (1964).

llY. N. Chiu, "Rotation-Electronic Interaction in the Rydberg States of Diatomic

Molecules", J. Chem. Phys. _4l 3235, (1964).

1 2Reference 7, P. 75.

13G. Herzberg, Spectra of Diatomic Molecules, (D. Van Nostrand Co., Princeton, N. J.

(1931)), pp. 218-240.

14For the case of il = 0, see Section IV.
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state, the initial or final wavefunction may be expressed as a linear combination

(summation over a) of case a wavefunctions. For a Hund's case d' state, the wavefunction

may be expressed as a linear combination (summation over A) of case b' wavefunctions.

For intermediate cases the wavefunction can always be expressed, by first order pertur-

bation theory in terms of the wavefunctions of the idealized Hund's cases.

In the reduction to the first equation of (5), use was made of the orthogonality

of the components of T2(I JK) to eliminate the corss terms composed of a product of

different bL-components which represents the different components of the quadrupole

tensor in the space-fixed coordinate system.8 In the treatment of the interaction

between radiation and matter 1 5 - 1 6 such non-mixing of different 4 components follows from

the orthogonality of the analogous components of the tensor (Il+ I2) along the same

space fixed coordinate system where for a transverse light wave R1 and H2 are the polari-

zation vectors which together with K, the propagation vector, form an orthogonal right

handed axis system. In Eq. (5), one of the three summation indices, M,4,M' is redundant;

we may arbitrarily eliminate the index . In the reduction to the final form of Eq. (5),

use was made of a very general sum rule for operators in the forms of tensors of any

rank (1), namely

EMEM C2 (JgJ';M,M'-M,M') = 2J'+l, I = 0,1,2,3 ... (6)

which follows from the orthonormality 7 of the Clebsch-Gordan coefficients and the sum-

mation of M' over the 2J'+l projections of J'. For the electric quadrupole tensor

operators, I = 2, and for the magnetic dipole or electric dipole operator, i = 1.

From Eq. (5), in principle, all the Hbnl-London type line-strength formulas
1 7

for AJ = J'- J = -2, -1, 0, +1, +2 (the 0,P,Q,R,S branches) and for AA = *2, *1, 0,

should immediately follow. However, there is considerable cancellation in actual cases

as well as some complication due to the differences in the A-doubling components (see

below). We have computed some examples and they are shown in Table I. The formulas

are labelled according to the case b designation and are, strictly speaking, good for

15j. S. Griffith, The Theory of Transition-Netal Ions, Cambridge University Press,

London (1961), pp. 52-55.

16 E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University

Press, London (1957), PP. 93-97.

1 7Reference 13, pp. 127-128 and p. 208.
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singlet, case b states only. However, by setting A = fl, it is clear from Eq. (5) that

for transitions between the multiplet levels of two Hund's case a states, the same for-

mulas for the J dependence are valid. The electronic and vibrational matrix elements,

of course, differ. For example, the 3 -2(a) _ 3A3(a) transition will have the same J

dependence as the 1A(b) - l0(b) transition. (See Section V for more details.) In the

formulas given, where the Kronig reflection symmetry (denoted by the superscript *) is

not specified, the transition if occurs, will have the same line strength formulas for

either of the A-doubling components.
1 8

For the n -lH transition, writing I1* = ( +I[-l Dl * -i DM-1  we see that

a complication arises because the Q 22 component of the electronic quadrupole tensor

operator connects the A = +1 or 10+1 and the A = -1 or ll components. As a result in

l8To show this, one needs only to know the relative Kronig reflection symmetry and the

relative overall inversion symmetry (parity) of the final and initial states. As an

example, consider the 1A - l transition. From Eqs. (4a)(4b), if the final state1* - J ' * ~ J'~

JI

wavefunction is IA± = A' 1@ M 2 ±I_ M:*21 with the eigenvalue (overall

parity) of *(-)J' under the total inversion operation, the initial state wavefunction
1 [101 1

mutb l=_* ' J) so that under the inversion opera-
tion it will have the same eigenvalue (parity) of * (-) - (-) = * (-)J'. This is

the requirement for an electric quadrupole or a magnetic dipole transition. The line

strength for the former is, according to Eq. (5), (2/3)(2J+l) l 2 [ l2lll) f x

C(J2J';112) + (-) J( )(l_21Q2_l.lll) C(J2J';-I-I-2)j . From the relationship

between the vibronic matrix elements, which follows from our definition of the elec-

tronic state under the total inversion (see Section IV), for singlet states,

1 l (l#P21Q 2 110l) and from the relationship between the Clebsch-Gordan

coefficients (see Ref. 7), C(J2J';-1-1-2) = (-)J'-J + 2 c(J23';II2), we reduce the

line strength formula to (2/3)(2J+l)(0 2 1Q2 11'l)
2 1C(J2J';112)12 an expression totally

independent of the * sign that specifies the Kronig reflection symnetry.
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the transition matrix element1 9 there are cross terms of the above kind which have signs

of (±), dependent on the Kronig symmetry. Hence the two A-doubling components of mole-

cules of unequal nuclei will have different line strength formulas, 19 and will give rise

to line doublets of unequal intensities, in contrast to the electric dipole III - I

transitions20 where the two components of a line doublet have equal intensities. An

analogous dependence of the matrix element on the Kronig symmetry may be found in the

fine structure formula21 of the 3fl*(b)= ( 11 [3fu(A = +1) * 3Iu (A = -1) state of H2

in Hund's coupling case b, where the-- 2 (12 i2) space component of the spin-spin inter-

action double tensor connects the 3u (A = +1) and 31u(A = -1) components.

III. MANETIC DIPOLE RADIATION

For magnetic dipole radiation, the Einstein spontaneous emission probability

for the transition between the state n and n', may be written as6 1 5

A n 647T3 v MZ M'M, [ iPi(nM;n'M') 12 (7)
3hC3 gn

where i = (ei/2mic) Ji = (ei/2mic) (;i+ i) is the magnetic dipole vector for the ith

charged particle with mass mi, charge ei, orbital angular momentum 1i and spin angular

momentum s., the other symbols have the same meaning as those in Eq. (1). The magnetic

dipole line strength is defined as follows:

S(JJ') = (Mmeiaii(jM;jM,)12 ()

In spherical basis, the magnetic dipole vector in the molecular coordinate

19To use these formulas, one must know the absolute Kronig reflection symmetry and the

absolute overall inversion symmetry of the states. Following footnote 18, let the1 * = _TI* :,* 1

final state be lI = ( ) A' [+1 D,+I * "-I DM'-IJ and the initial state be
1 = () A[ 0+ 1 D 1 * (_)jj -1 DM1 J. The line strength according to Eq. (5) is

(1/4)(2/3)(2,+1) (+lIQ 2oI1+) C(J2J';lOl) + (-)i'T ('lIoT01®) C(J2J' ;-lO-l) +

(-) J'J(0+l1IQ21l) C(J2J';-121) k (0_1IQ2 21+ 1) C(J2J';1-2-1)j2 an expression

containing the * sign that specifies the Kronig-symmetry of the final state.

20Reference 13, p. 268.[ 21P. R. Fontana, Phys. Rev. 12 , 220 (1962). For a correction of a factor of two in

these formulas, see L. Y. Chow Chlu, Ref. 10, footnote 20. The writer is indebted

to L. Y. Chow Chiu for bringing up this point.
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system22 may be written as a contraction of irreducible tensors as follows:

Si:Pi = Zji(ei/2mic) T,~j. Jil. Ji=TXpnC

* (9)
i Zei(ei/2mic) Tl(Ji'ij. Ji) T(nnJ K),

where TI is the Xth component of the irreducible spherical tensor of the first rank;
7'23

the components of T14 (I J K) are mutually orthonormal and D ) is the totation matrix

of the first rank. Using the same initial and final wavefunctions as in (4a)-(4b) and

following the same reduction to Eq. (5), we get from Eqs. (8)-(9) the line strength

S(jj') = f2J-l MZ M? [Z ~asAbA(nvADlXnvA)

x C(JIJI;AAA)J 2 C2(JJ';144') (10)

= (2J+l) [Z AZ JA aaAbA, (n'v'AlIDIInvA) C(JlJV;AXA')j

The J dependence of formula (10) for AJ = J'-J = -1,0,1 (the P,Q,R branches)

and for AA = 1,0 is, aside from definitive factors, the same as that of the Hbnl-

London line strength formulas17 for electric dipole transitions. For illustrative

purposes, we have computed a few examples and have given these along with the master

formulas in Table II. These formulas are equally applicable to electric dipole transi-

tions, but the vibronic matrix elements of course must be different. In the examples

given, there is no need to give the Kronig reflection symmetry for the states involved,

221n the space axis systems ZD i = Z (ei/2mic) Tl(JixJyj. z ) T (I J K) =

Zj x (e/2mc) D 4(-V, ,-q) T~( J~ ) T* (I J K) and is equivalent to Eq.

(9), see Refs. 7 and 8.

231n terms of the spherical harmonics on a unit sphere Tl, = (4'T/3)' Y1X" Explicitly,

T1 o(abc) = c, Tl*1 (abc) = ; (1/-)(a * ib).
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as the formulas are completely independent of the * sign that specifies this symmetry.24

Therefore, for molecules of unequal nuclei the two A-doubling components of a line

doublet for transitions among the states with A 00, will have equal intensities. This

follows from the fact that none of the components of the dipole vector can connect 1+A

1A to give rise to cross terms. However, when spn-orbt-interactons are con-

sidered, in both electric dipole and magnetic dipole transitions of 1 1(b) _ 3no(a) or

3nl(a) - 3 nO(a), such Kronig symmetry dependence does occur and it is considered in

Section V. It will be noted that contrary to earlier thoughts2 '13 we have asserted

that even for AA = 0 (e.g. the 1 1R and 'A -lA transitions) there should be magnetic

dipole pure rotation spectra. Because for A 0 0, it is clear that there is a mag-

netic dipole moment (L ) which will be oscillating as long as the electrons receive the

periodic perturbation of the radiation field and radiative transitions can occur as

long as there is a difference in energy between the initial and final states. This

difference does not have to be that in electronic energy but can be that due to the

difference in rotational energies.

IV. THE ABSOLUTE REFLECTION AND INVERSION SYMMETRY OF MOLECULAR WAVEFUNCTIONS.

Many of the transition intensity formulas we have considered are dependent on

the Kronig reflection symmetry of one of the states involved. These transitions are

for example, i , 30(a. ; n i3l(a); and i* R  311(h), where the * sign

denotes the Kronig reflection symmetry of the final state and the a's and b's inside

24To show this, consider, as an example, the magnetic dipole transition between the

final state l±(J') = A'l* DM,, and the initial state 1i = +fk 1  *

(-.J'-Ji i D1_IJ. The line strength according to (10) is (2J+l)4 (IIDII 1I+I)

C(JIJ';l-l0) 0 () J ' - (I0 IDII0I._) C(JIJ';-llO)j2. Because

('4ID1_1lll0+1 ) =_..(*) (10IDn 1j ) (See. IV) and C(JIJ';1-10) = (-) C(j1 ;-lO),

the line strength reduces to 2(2J+l)(OIDl ) C2 (JlJ';-110), an expression inde-

pendent of the * sign that specifies the Kronig symmetry of the final state. For an

electric dipole transition, the initial state should be

I=() A[+ D i _ DM_I But as the electric dipole (R) matrix

element (1I* 1 (*)( 1i IRil.), the result is the same as above, but

with D replaced by R.
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the parentheses denote the Hund's coupling cases of the states concerned, R, D, and Q

stand for the electric dipole, magnetic dipole and electric quadrupole, respectivelj.

it is therefore necessary to know the absolute Kronig symmetry and the absolute total

inversion symmetry (overall parity) of the wavefunctions used. Our emphasis here is on

the Kronig symmetry which for states of A 0 0 we can only draw an analogy to the 1Z*

state by calling as our normalized (normalization constant A') singlet state wavefunction

(P) in Hund's case b coupling

_( ,=J,) = ( )tA,~ i • -J4 j 0(111) DM, i = ( )zA' 0(ini ) DM1 
* -(ii DMid , (1i)

'IT(Ji~ I D~n~) j: f~ 11)D3:l -D (lfl

invesio opraton gies n egenalu 2 5 -26which upon the total invers(on operation i gives an eigenvalue (overall parity) of
(*) (-)J'.

25The assertion that the wavefunction in Eq. (11) has this eigenvalue implies a very

different (from the old convention), new definition of the electronic wavefunction, 0,

which now has the property that under the Kronig reflection operation with respect to

a plane passing through the E-C axes (this operation is equivalent to changing the

electronic azimuth angle from 9 to 2T-qo or to -9), 5 (1) = (-)C01_l) or more

generally D l (_)A 1 A for a singlet state. Similarly, under the reflection

with respect to a plane passing the q-t axes (this operation is equivalent to changing

v to 1-) -vg-(il) or more generally v - 1 The most general

definition of a singlet case b state of an arbitrary A and with a parity of*[ nJ ' * 10 DJ'*]

is then ?P(IA, j,)= ( ) A'.+A D M I A D '-A]. Our kind of electronic wave-

functions have properties that correspond to the spherical harmonics (Ref. 7) used to

represent the Slater atomic orbitals in the construction of molecular orbitals. In

the old convention ~ ~ *A= A and A.= (-)AA" The most general definition of

singlet case b state in the old convention is J( ,= .,) = (A)j A' [l+A D'A

(.)A -A DM,_AJ so as to have the same eigenvalue under inversion of (*)(-)J'. This

kind of electronic wavefunctions appear in the correlated molecular wavefunctions

where one simply represents the azimuth dependence as exp(*IA9).

26There are two ways to bring about the total inversions of the coordinates of all

particles referred to the space-fixed axis; namely to go from x., Yi' z

"xis -Yis -Z. for all i: (1) The Euler angles (Ref. 7) change from a, 1, y to 7r + a,

Ir - 1 and 7r - y respectively, with corresponding change of the molecular axes from

nt, N , n Cto nt, -n, n,* The net effect on the electronic coordinates referred to

the molecular axis system being that of the operation 0". Under such an inversion,
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the rotational wavefunction changes from D. to (_)J-A DA" (2) The Euler angles change

to 7r + a, 7T- 0, and 27r - y (or --y) respectively with corresponding change of the mole-

cular axes to -ne, n, n(. The net effect on the electronic coordinates is equivalent

to OTI . Under such an inversion the rotational wavefunction D;-- changes to (-)JD A.

When these transformation properties of the rotational wavefunctions and those of the

new electronic wavefunctions (Ref. 25) are taken into account together, we get the eigen-

value (overall parity) of the state. The eigenvalues obtained from both ways of inver-

sion are the same as they should be. In either cases i ADi - (-)J _ADM.A.

For triplet states of A 0 0 we draw an analog to the 32 state. Thus for Hund's

case a state we have for l = 0, 1, and 2, the state function (0) as follows:

.3 =J

which under total inversion gives an eigenvalue of (-)(*)(-)J, the extra minus sign being

due to the odd properties of the triplet-state spin eigenfunction under inversion.
27

For Hund's case b states, we express the state function (*) as a linear combination of

the case a statefunctions (0) as follows
Il,28

4r(U~ = .~~[ * )N jV(3n4 =1) = (j)i(4'(34 =j7+l) '* * (34 =-1)j _ "i f 0(3nS) (3

where bNil = C(JlN;n,-Z,+l) is the Clebsch-Gordan coefficient, S J+N+l is the

Kronig reflection-symmetry designation. The wavefunctions on either side of Eq. (13)

under total inversion will consistently give the same eigenvalue (overall parity) of

N Such consistency permits the generalized treatment that will follow. In the

reduction to the final form of Eq. (13) use was made of the expression of the case b

wavefunction (characterized by N and A) in terms of the case a wavefunctions (charac-

terized by J and 41) through a coupling of angular momentum11 J with -S(S = 1 for a

triplet), namely

27j. H. Van Vleck, Phys. Rev. A2, 544 (1932), p. 559.

2 8xplicitly, *(n'1 = fLbj+Mf 1(3IA) * '~~ Z " S(3 ~)

P _I= b j(3l). Compare these results of Kovacs (Can. J. Phys. 2, 309,

1958) who gave a different definition for the y(3ll) state. The inconsistency intro-

duced by this definition has been remarked upon by Chiu (Ref. 11).
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wP(3ll=*) = A Zj C(l;M:X:k)(n,) (14~)

and

(-)Ni ?P(3fA.+l) - (-)J+N+l A E n C(JiN;n,-2,+ll D3n ) J

=~~- AN (i~ (15

V. APPLICATIONS TO THE 11 - 31(a) TRANSITIONS

Except for the complication due to the inversion property of a triplet-state

spin eigenfunction,
2 7 the magnetic-dipole and e lectric quadrupole line strength formulas

for the 1 1 -1 2 (a) and 1 H -3 nl(a) transitions where the triplet state is in Hund's

coupling case a can be obtained from the 1 HlA, 1H '_l H transitions in Tables I and II.

The case of 1H -3O(a) transitions presents some new aspects
2 9 but follows

essentially the same principles. We give the simplified and condensed master line

strength formulas for these transitions in Table III. In the reduction to the master

formulas the following relationships are used:

C(JIJ,;AXA,) = ()-iJ+l C(J2J';-A-X-A'), AJa J'1- J,

X~ 3 )ll (n) c l~

G" DlX Dl,-, DlO Dl- O v 2, - () %,-X" 2,0" a ,-o

2 9We take as the final state function P(iI*) () A' 1( lil) DM, 1 * D(l1 ) D.:Ij and

as the initial state function 0(3j) = (O)R A[(3I+) ; ()AlJ+l 0(3')] Dn. Both

of these have the same parity of (*)(-) under inversion. The magnetic dipole or

electric quadrupole line strength formula for the in -3 0 transitions is, before

any reduction or simplification, S(J,Jt) = (I/4)(2J+l) [(klIF lII13 +O) C(JJ';oll) +

(_) A+l ( 1.. 1 1F .1 3 -0 ) C(jLj';0-l-l) * (-)AJ+l(llIF 11 131"_0 ) cO(J,';on) *

( 1flIFjI 3 +O) C(JIJ,;O-l-l)12 where for a magnetic dipole 2 = 1, F = D
2

and for an electric quadrupole I = 2, FJi 1 = 5 For an electric dipole (H),

however, we must replace ( 1)Al+ by ()AJ, set F ,±I = R-H 1 and =i, where

, = ei(gi*in.) which has the properties ts follows: a I = (-)xR,_X

with H1 ,0 " Rl,-O and (l^, {H1, .n{In) -n_n)
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From the last four relationships, and using the fact that the matrix elements should be

invariant under the operation3 0  CF , we get the relationships for the vibronic matrix

elements, with 1IHA, standing for c(lIHA,) etc.,

"11A, JDi,A,f3' ) = (liA, 1l,-A+nfT.f)

and (17)

(1 A, IQ2,A,.n 3 n) = (-) (IAIQ2, ,A+n13_n) ,

where A' may be *1, n may be *2, *1, *0 and the notation is self-evident. In the same

reduction we have used the following abbreviations:

a = (inJIQ2 113l_2)

= (lnlIQ 20 3nl)

-y = (lnlIQ21I3n+o) , (18)

6= ( inIlQ2 13no)

c = (inll1 2 1
3,1_1)

For the xa .fAA dipol le, we replace a.8.Y.6 y A,B,C, and D respectively, and

rl Q2 by Dl. in the above abbreviations.

In all formulas, the J dependence of the magnetic dipole transitions, is equally

applicable to the electric dipole transition except when (-) AJ+ occurs, it must be re-

placed by (-) J. The net effect is to replace D by -D. Explicit formulas for the

different branches are computed and given in Tables IV and V where we have assumed a

normal multiplet with the case i states, namely 3 ., 3 I, 3l 0 correlate to the caseb

states 31N=J+l, 31N=J, 31 N=J-i respectively.

VI. APPLICATIONS TO THE 11 - 31(b) TRANSITIONS

When the triplet state is of Hund's coupling case b we express the state func-

tion as a linear combination of case a wavefunctions as in Eq. (13). The magnetic-

dipole master line strength formula Is as follows:

For in* -3f(b), S(J,J') = (2J+)[(-) J+i A bN2 C(JlJ';-21-i) + (19)

B bNl C(JlJ';101) + C bNO C(JlJ';Oll) * (-)J+ D bNO C(JlJ';011)] 2

301f we use the ac operator, the relationships between the matrix elements so obtained

are the same as they should be.
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For 1fl - 3nlk(b), .one simply replaces the coefficient of D, which is * (.)AJ+l, b

* _)jJ+N+I. For electric dipole transitions, one changes (-)AJ to (.)AJ+l in the above

formulas. The electric-quadrupole master line strength formula is as follows:

Forlli--31(b), S(J,JI) =. (213) (2J+li [(+) (-)A J + l  bNlCJJ;1)

+ (.)AJ+l a b N2 C(J2J';-21-1)

+ P bNl C(J2J';101) + y bKo C(J2J';Oll)

* () J+l 6 bNO C(J2J';0n)]
2

For In_ 3I*(b) one simply replaces the coefficients of 6 and E, which are (*)()AJ+l

J+N+lby (*)(_)J . Explicit formulas for the different branches are given in Tables IV

and V.

VII. DISCUSSIONS

In all of the initial and final state functions employed here, we have made use

of the Born-Oppenheimer (B.C.) approximation to separate out the rotational wavefunction.

If the B.O. approximation is valid, the vibronic matrix elements between different

electronic states are small. In particular, for a linear molecule only the
0 = nuL e (3z2 - r 2

enuc(Znuc nuc) component of the nuclear vibrational matrix element

contributes to the rotation-vibration spectra.

If rotation-electronic interaction is considered, states of the same J (or N)

but different £2 (or A) are mixed into the statefunction, we then will have the P and R

branches of the magnetic dipole c.s well as the electric quadrupole in z-l z transi-

tions where the initial and final states are of different Kronig symmetry. For

1t --2* transitions where the initial and final states are of the same Kronig symmetry,

there is, besides the electric-quadrupole 0, Q and S branches (AJ = -2,0,+2) which

exist anyway, a magnetic-dipole Q branch after rotation-electronic interaction is

introduced.

It should be noted that for singleb-triplet transitions, as the spin magnetic

dipole vector S = ziSi is diagonal in the Russell-Saunders representation, there is no

pure spin magnetic-dipole transition. All magnetic dipole transitions of this type

must come through the spin-orbit interaction.31 In our treatment here, spin-orbit

interaction appears only in the electronic matrix elements.

31On.ly in multiplets involving more than two electrons will spin-spin interaction

connect different multiplicities.
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For homopolar diatomic molecules, the formulas for the electric quadrupole

magnetic dipole transitions are of course applicable only to 
1fl_ -1 or 1l u- 3

u

transitions. In these cases, besides the normal intensity alternation due to the popu-

lation difference governed by nuclear spin statistics, there is an additional intensity

fluctuation due to the two different intensity formulas appropriate to the two

A-doubling components. The derivation of the condensed formulas are straight-forward,

once the principle behind it is mastered. Readers interested in the detailed steps

are referred to four of the footnotes1 8 ,1 9 ,24,29 each giving a different type of

examples. Applications of the present technique to cases intermediate between Hund's

case a and b and estimate of the electronic matrix elements will be treated in a future

article.
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ON THE INTENSITY OF ELECTRIC DIPOLE TRANSITIONS

Ying-Nan Chiu

Laboratory of Molecular Structure and Spectra
Department of Physics, University of Chicago

Chicago, Illinois 60637

• and

Department of Chemistry
The Catholic University of America

Washington 17, D. C.**

ABSTRACT

A new method is proposed to derive the electric dipole transition intensity

distributions for the electronic bands of diatomic molecules. The theoretical founda-

tion of the use of the H~nl-London intensity formula and its shortcomings are discussed.

In the derivation of the intensity formula, it has been a common practice

(Schlapp 1932, Kov~cs 1960, and James 1963), to equate the square of the transition
dipole momentt IRnn' 2 

= im' n'2 to three times nn'2 the square

of the Z component of the electric dipole transition matrix element. The J dependence

of the latter which gives rise to the line strength is usually taken from the Hanl-

London formula (Herzberg 1931, p. 208). It is the purpose of this work to discuss the

theoretical foundation and the inadequacy of this approach and to propose a general

alternative method for computing the intensity formula for the electronic bands of

diatomic (or linear) molecules.

From the interaction of radiation and matter, we know that the oscillating

material (a molecule, for example) dipole may be referred to an arbitrary space-fixed

axis system (, J, ) or to a molecular axis system (ne, nv, nC). Thus

= XI + Yj+ = n + 1n + CnC. We choose to use, instead of this Cartesian basis,

a spherical basis (Rose 1957, pp. 63-67) for the easier evaluation of the matrix

elements. In terms of this the Z component of the electric dipole vector reads

This work was supported by a grant from the National Science Foundation, NSF GP-28.

**

Present address.

tFor brevity, we shall throughout use the coordinate axis symbol to denote the compo-

nent of the electric dipole along this coordinate axis. For example, Z = ZieZ,

where ei is the charge of the ith particle.
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Z D{oC-', -e, -q) VxC( TO,) = ZXDOk, ,e,w ) V1x(C ,Ti,t) and the complete dipole

in the space axis system reads = MV ( Y, Z) V1 *(j, j, Kj

SD?,*(qejTy) vlj ) v1,*(I, T,) where Dx*(p,,e,T) is the rotation matrix

(Rose 1957, P. 54, p. 60) and q, e, T are the Euler angles through which one rotates

the fixed space axis system to the molecular axis system. V1 . is the Xth component of

the spherical tensor of the first rank which constitutes the spherical basis.t

We shall consider explicitly only the intensity formula in the rotational

structure of an electronic band of a diatomic molecule. For a singlet state in a Hund's

coupling case b (Herzberg 1931, pp. 218-240), we write the initial state function as

- (2J+ l) 'A DJ *(,eT)

and the final state function as

= 2J + 1) J

where the rotational wavefunctions which are the rotation matrices, have 2J + 1 and

2J'+ 1 degeneracies represented by the indices M and Mt respectively, which designate

the space components. The square of the transition matrix element for the Z component

of the dipole, after integrating out the rotational wavefunctions (Rose 1957), is

ZM-M znn' 2= 2 1)t 2 (A I ^,RVIAAIA) 2C2 (jj,;A,A'_A,A, ) x Z MZM, C2(JIJ';MOM, 6MM, Wl

and for the dipole as a whole is

Z MZM I k n n ' 1 2 = (2J +1)(AtIR 1 ,A'-AIA)
2 X

(2)
C 2 CJIJ1; A , A ' - A , A ' ) Z MEM, Z 4, C 2 CJiJ ' I

;K
MM

where R,, = VIA(t,l,) and (At IRIA',_fAA) is the vibronic matrix element, the super-

script 2 on C (JlJ'1;NLM'), etc. denotes the square of the Clebsh-Gordan coefficient.

As M + p. = M', one of the indices in Eq. 2 is redundant, we have therefore the sum rule*

In the molecular axis system Y VI,(e,1,,)VIx*(n, n, n,) =

( xI , jT,, J); the expression is identical.

tExplicitly, the first rank tensor (vector) components are the following:

Vo(a,b,c) = c, and V1 (a,b,c) = (1/vr2) (a ± i b).

$In fact for a tensor operator of any rank, 1, we have the most general sum rule
as follows:

Z MZMC2( Aj ;MM 14,1) JC 2 (JAJ N'; Mp + ) =MC 2(jj';M' -p.,P,M')= 2J'+ 1.
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ofZ M MMC2(Jlj';M,M'-M,M) = 2J'+ 1, which is a generalization of the orthonormality

of the Clebsch-Gordan coefficients and is the basis of the sum rule for vector operators

given by Condon and Shortley (1951). In Eq. (1) because (Rose 1957, P. 38)

ZC2(jIj,;MOM) = (2J'+ 1)/3 ZM C2(JJ'l;M-MO) = (2J'+ 1)/3 ,

it is therefore perfectly valid to equate the results of Eq. (2) to three times that

of Eq. (1). Although it will not be shown here, it is easily proved" that before

taking square and summing over M and M' the matrix elements of the X, Y, and Z compo-

nents are not isotropically equal.

In the reduction to Eq. (2), use has been made of the orthonormality of the

different ith components of Vi (I J, C) which follows from the orthonormality of the

unit vectors along the rectangular coordinate axes I, J, and K.

For a general initial state wavefunction (Chiu 1964)

n= A n Ma D

and a final state wavefunction

T = A'Z , bn D, n ,n'nb1'10111 '

where A = (2J+i/8t2)i and A' = (2J'+I/8 2) , the general line strength formula reads,

ZMMuIIn  = (2J+l)[Zar , n bnG, bnfl ("'1RIX1)C(JIJ';aM') 2  (3)

From the relationship between the vibronic matrix elements such as

(-0' 1Rl,_ -X1) = (-)S( *)S' (, IRlIn )

where S and S' depend on the operator R as well as the electronic wavefunction (see

below) and from the relationship

C(JIJ';-n,-X,-n') = (_)AJ+l c(JiJ'mfA,')

one can eliminate the sum over negative 0',A and fl without losing the correct sign.

Whereas, the straightforward use of HMnl-London formulas which do not give explicitly

the relationship between the J dependence for +A and -A states, as the Clebsch-Gordan

For this purpose, one writes X = (1/F) + D117j V1 o'nic)

and Y = (i/) ZA[DI* + D-1X VA(t'7',)
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coefficients here do, may lead to errors of signs. For example in the X0 3- (a)

transitions, we have for the initial state

T A l/ 2-) 3A DJ* (-6 0(3ADJ

and for the final state

T n' =  A'<D(I ) 
iO J,

and we get the line strength, for AJ = J'- J,

L M ' IRnn 2 - J(2J+l) L(oIR 1,_111) C(JiJ',1-1o)

* (-)(0 1R 1 -ll-) C(Jl,;-nll0)]2 (4)

= 2(2J+1)(01R 1,1 1-l) 2 C2 (J!J';-ll0)

where (01RI,.IJl) = vC(0jRl_1 1 1) = ()(0IRll -1) and were we have made use of the

relationships such as reflection with respect to the plane

a~ D12* = *z a~ Hld = - Rlcv 0 ( 0) v ,?

and

v G (3C ) = ( 0)f+l (36_)

inversion with respect to the coordinate origin

VD (Z') DM0

and
iO0A +aD =* 0(A-)D "a  .

Eq. (4) is independent of the Kronig reflection symmetry of the 1Z state. The reason

is that regardless of whether the upper state is 1:+ or IZ- there is always a A-

doubling component of the lower 3A1 state from which transition may take place. We

thus take exception to the Eq. (4a) of Kovacs (1960) which gives a line strength for

Similar objections may be raised to the general line strength formulas (4b), the
I - and - 1 transitions. However, these objections all appear to be a

matter of minor technicality as the branch intensity given in Kovacs' tables actually

makes no such discrimination against certain branches and are the same for X+ and

I- states.
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I * states proportional to [1 ± (1 ) where 6 is even for I+ and odd for lx- states.

This latter line strength formula would then exclude P and R (AJ T 1) branches for the

1Z states if the * signs are read consistently and 6 is chosen as above. A more

detailed discussion of our method, its extension to electric quadrupole and magnetic

dipole transitions with application to the 11± - 3 n(a) and 1H± - 3I(b) transitions will

be treated in a separate article.
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ON THE VECTOR ADDITION THEOREM FOR THE EXPANSION OF SOLID SPHERICAL HARMONICS

Ying-Nan Chiu

Laboratory of Molecular Structure and Spectra
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Chicago, Illinois 60637

Expansion of solid spherical harmonics rbn Ynk(b,b) or rb -n - Ynk(ebb) of

vector rb referred to center b in terms of those on another center, as well as the

expansion of solid spherical harmonics of the interelectronic vector.1 2 in terms of

those of individual electron position vectors X, and92 are useful in the evaluation

of' molecular integrals that occur in the study of electric and magnetic interactions

in molecules.

In a recent paper1 (hereafter referred to as paper I), Chiu demonstrated the

common principle behind the above kinds of expansions and showed the vector addition

nature of solid spherical harmonics expansions through expressing them as coupling of

irreducible spherical tensors. From this principle we shall reformulate in a clearer

way the vector addition theorem and shall give a thumb rule for its ready application

to physical problems. By use of this theorem one can easily write down any expansion

of solid spherical harmonics, including those in existing literature.
2 - 9

In essence the theorem says that given vectors roa' Zob in space and vector

Lab defined as Xoa -- ob' the solid spherical harmonics of the above vectors couple

to give one another as irreducible spherical tensors (aside from definitive constants)

according to the vector addition model.

The definitive constants may be accounted for by defining1 the irreducible

tensor of regular solid spherical harmonics as

Rnk b L47r/ (2N+l)*] rbn Ynk(bb) (1)

and the irreducible tensor of irregular solid spherical harmonics as

Ink(,b )  ['(2n)!] rb-n-1 Yk( ,) (2)

This work Was supported by a grant from the National Science Foundation, NSF GP 28

Research.

Present Address: Department of Chemistry, Catholic University of America,

Washington 17, D. C.
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As an example of the theorem, according to the vector addition relationship

rob - roa + (-ab) we have

n
Rnk(sob) C(1,n-1,n;m,k-m,k) RAm(.oa) nA,-ab) (3)

A-0 M-

and
Ink (rob C(1,n+1,nlm,k-m,k) R m(x<) n+I -,:. (4)

n - obi - I n+11=0 M--1

where r> and r< stand for the larger or smaller of £oa and -tab. The vectors stand

for the lengths of themselves and the polar and azimuth angles [as in Eqs. (1) and

(2)] made by them with respect to the mutually parallel sets of local axes at the

origin of these vectors. Since the origin does not really come into the expression,

Zoa' .ob and Ab may well be the sides of a triangle in space and o a space point, not

any particular space-fixed origin.

For mnemonic purpose we have arbitrarily written the first irreducible tensor

on the right hand side of (3) [or in (4), the tensor with the lesser argument r <] as

R I M But as the rank A and the azimuth quantum number m are dummy indices, by chang-

ing their designation but keeping the relative magnitudes, one can reduce (3), (4) to

(5.1a) and (10,la) of paper I. C(A,n*1,n;m,k-m,k) is readily identified to be the

Clebsch-Gordan or Wigner vector coupling coefficient
I 0 which also gives the conserva-

tion of azimuth anigular momentum quantum number on both sides. For an inverse vector

we have RNM(-X) = (_)N M W and IN(-ri) = (_)N INM(L).

As it stands Eqs. (3)-(4) may be viewed as the expansion of spherical har-

monics of the vector Sob referred to the origin o in terms of those of 4a referred to

the same origin and those of ab referred to a different origin b. With repeated ap-

plications of (3) and (4) expansions in terms of vectors at yet another center may be

obtained. This constitutes the two-center (bipolar) expansions3'4 which along with

the case of unparallel local axes systems have been t.eated at the end of paper I.

For ab along the polar axis (3), and (4) represent the displacement theorem

of Hobson;2 for arbitrary orientation Of Sb they lead to existing results in litera-

ture.l,5,7,8,9

From (3) and (4) it is clear that the rank of the second irreducible tensor

on the right hand bide, instead of a range of values can take only one value: n-A

for regular solid spherical harmonics expansions demanding that the ranks of the two

tensors on the right add to give n which is the rank of the tensor on the left; n+A

for Irregular solid spherical harmonics expansions demanding that these ranks subtract
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to give n. This is of course a very special case of the coupling of angular momentum

vectors as here we assert that the "wavefunctions" corresponding to all these vectors

are spherical harmonics, which in truth the wavefunctions in composite space are not.1 1

This limitation on the values of the ranks of tensors although resulting from detailed

analysis1 can be conceived as related to the dimensionality of the radial function

rbn on the left hand side.

If a represents electron 1, b represents electron 2, then following (3) and

(4) the expansion of r1 2 according tor 1 2 = + (-k) will give for n-k-O the coulomb

potential expansions, for n = 2, k = 0 and *2 the electron magnetic dipole-dipole

interaction operators.6 Our (3) and (4) with arbitrary n and k are of course the more

general and will give expansions for operators of higher (than dipole) magnetic multi-

pole interactions.
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Eqs. (3) and (4) because this is not the ordinary case of coupling of angular

momenta.

10. Algebraic expressions of the necessary coefficients are given in paper I, Ref. 1.

11. M. E. Rose, Elementary Theory of Angular Momentum, (John Wiley and Sons, New York,

1957), p. 61.
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The emission spectrum of 16N2 has been studied in the region 2000-9000 A with a view to investigating the
vibrational structure of some of the weaker systems. In the cases of the Herman infrared bands and the
Gaydon-Herman green bands, it has been possible to decide between alternative vibrational schemes
which have been suggested. Observations have also been made on the Goldstein-Kaplan and the B'--B
systems. In the near-ultraviolet spectrum it is shown that the h--*a, s'-a, r'---a, m--+a, and d---a progression
all arise from upper levels with v>0. The possibility that some of these progressions may belong to a single
system is discussed. The vibrational schemes for the fifth positive and Kaplan's first and second systems
have been confirmed. Some new bands of uN5 corresponding apparently to hitherto unobserved transitions
are reported.

I. INTRODUCTION the region studied. For the near-ultraviolet systems,

N the spectrum of N2 there are still many systems of a large Hilger quartz spectrograph which gave a dis-
which our knowledge is far from complete.' For persion of 4 A/mm at 2500 A was used.

some of these the nature of the electronic states in- III. HERMAN INFRARED SYSTEM
volved has not yet been established, while for others
even the vibrational analysis is subject to considerable Using a low-current discharge cooled to liquid-
uncertainty. The present paper, which describes nitrogen temperatures, Herman4 observed eight bands
investigations of the spectrum of 16N2 in the region degraded to shorter wavelengths in the region 7000-
2000-9000 A, is concerned with the vibrational struc- 8600 A. A vibrational analysis was given and it was
ture of some of these less well understood systems. Part suggested that the system might arise from the singlet
of the present data on the near ultraviolet spectrum has transition tv--q 12.+. Carroll and Sayers' studied thealready been reported brieflyp system under higher resolution and were able to identifysix heads or features in each band. The possibility of a

II. EXPERIMENTAL singlet transition was eliminated and a new vibrational

Several sources were used in the course of the present scheme was proposed in which the v' values of Herman

experiments. For the Goldstein-Kaplan and for the were reduced by unity.
B'--+B systems, an ordinary transformer discharge In the present work the bands were studied with both

through pure nitrogen was used. To excite the Herman '4N2 and 11N2 and the data for five bands of the system
infrared system and the Gaydon-Herman green bands are given in Table I. The measurements for the first four

rather specialized sources had to be employed. In the bands refer to the long-wavelength head. In fact it was
case of the former, the bands were studied in a weak low possible to measure between four and six heads in these
current subnormal-type discharge while the green bands and each Ap value in Table I is the average of the

bands were found to be considerably enhanced in dis- isotopic shifts observed for corresponding heads. In

charges cooled to liquid-nitrogen temperatures. For the the case of fifth band, due to overlapping by first posi-
near-ultraviolet bands, a mildly condensed discharge tive structure, it was possible to give a reliable measure-
through pure nitrogen was used for all systems. ment for the short-wavelength head only. For the same

In the visible and near infrared the spectra were reason t5e0-sot0peshifts of the Herman bands in the
photographed on a small Wadsworth grating spectro- r could not be determined with any

graph, which gave a dispersion of about 8 A/mm over accuracy and so the data are not given.
Columns 4 and 5 of Table I show the isotope shifts

t This work assisted by the Office of Naval Research under calculated on the vibrational scheme of Herman and
Contract Nonr-2121(01) and by the U. S. Air Force, through
Electronic Systems Division, Air Force Systems Command under that of Carroll and Sayers, respectively. It is evident
Contract AF19(628)-2474. that the latter analysis is in fact the correct one.I For a recent and detailed account of the band spectrum of N2,
see A. Lofthus, "The Molecular Spectrum of Nitrogen," Spectro- IV. GAYDON-HERMAN GREEN SYSTEM
scopic Report No. 2, University of Oslo, 1960.

p. K. Carroll and D. Mahon-Smith, J. Chem. Phys. 39, 237 This system, occurring in the region 6400-5000 1, is
(1963). very similar in character and excitation condition to

P. K. Carroll and N. D. Sayers, Proc. Phys. Soc. (London)
Ai, 1138 (19S3). 4 R. Herman, Compt. Rend. M33 738 (1951),
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TABLE I. Herman infrared system.

Carroll-Sayers Herman

X (-1) 1% X(1) IAN AV (obs) I- " AV v'-v" AV,

8101.4 8102.0 1.3 0-0 3.4 1-0 32.4
7869.4 7877.8 13.9 2-2 16.0 3-2 39.9
7095.4 7123.9 56.8 2-0 59.9 3-0 84.4
7033.2 7062.9 60.1 3-1 62.2 4-1 84.1
8549- 8536.61 -16.9 0-1 -20.0 1-1 9.3

£ Short-wavelength head.

the Herman infrared system and will therefore be con- discharge3 while later the system was found to be
sidered next. Gaydon5 observed seven bands of the developed in cooled afterglow sources.' From a rota-
system while Herman6 independently discovered the tional analysis of the 8265.5-1 band, it was shown' that
three strongest bands. Later another band at 5047 A the B' state was Z- while the same result was ob-
was reported while Grfin 7 using electron beam excita- tained"° independently from a study of the far-ultra-
tion observed 17 bands in all. violet forbidden transition B',-X. Bayes and Kistia-

The tentative vibrational analysis proposed by kowsky"l observed the afterglow spectrum using "IN2,
Gaydon was quite different from that given by Herman. and although their work was apparently carried out at
It is the most likely scheme and has been generally quite low resolution, their results left little doubt as to
favored. The results of the present work are given in the vibrational numbering in the B' state. The present
Table II where the measurements refer to the short- more accurate data on different bands of the system
wavelength heads. Several features were in fact meas- observed in the discharge tube are presented merely as
ured in each band and the tabulated Av is the average conclusive evidence for the vibrational analysis.
isotope shift. Column 4 gives the shifts calculated from As the spectral region of interest is heavily covered
the vibrational analysis of Gaydon and it is seen that by first positive bands the system is difficult to observe
the values are in excellent agreement with those ob- in discharge tube sources and with "4N, only one band
served experimentally. Gaydon's analysis is therefore (5-1) can be detected. However, in "IN, due to a
established as being correct. favorable shift of both systems four bands could be ob-

Both the green bands and the infrared bands dis- served and measured. The data for these bands are
cussed in the previous section are quite difficult to ob- given in Table III and it is seen that the observed
serve and require special conditions of excitation. frequencies of the R2 heads are in excellent agreement
Nothing is known about the electronic states involved with those computed on the basis of the work of Bayes
and no transition between any of them and the other and Kistiakowsky.
known states of N2 has so far been observed. Until now
the possibility at least existed that one or both of these VI. GOLDSTEIN-KAPLAN SYSTEM
systems might not be due to the nitrogen molecule. This system consists of a long progression of bands
However the present work, apart from establishing the extending from the green to the near ultraviolet. Nor-
vibrational schemes for both of these systems, shows mally the intermediate bands are not observed due to
conclusively that N2 must be the emitter.

V. B' 'z.--B EIi INFRARED SYSTEM TABLE Ill. The B' 3Z.---B 311, bands. At heads.

It was with a view to studying this transition at a V'-VF X(1)'N 1  ,(cm-')"N: r(cm
- ) calc

time when little was known about it that the present
work on the spectrum of "SN, was initially undertaken. 8-2 7035.8 14 209 14 202
The first band was observed in emission from a nitrogen 8-3 7924.9 (12 615)- 12 616

4-0 8195.1 12 199 12 195
5-1 8402.5 I 896 il 901

TAzL& I. The Gaydon-Herman green bends.

a Computed from 8-u head. A head obscured.
1-" )4N: X (A) N, a(obs) I (calc) I'F. LeBlanc, Y. Tanaka, and A. Jursa, J. Chem. Phys. 25,

0-0 5574.5 5575.3 2.6 2.6 879 (1959); G. B. Kistiakowsky and P. Warneck, ibid. 27, 1417
1-0 530.6 5317.4 32.3 32.1 (1957). See also M. Brook, Scientific Report No. 2, Institute of
2-1 5271. 5281.9 36.8 35.6 Geophysics, University of California, Los Angeles (1953).
2-0 5073. 3 509.0 60.1 59.9 1. K. Carroll, and H. E. Rubalcava Nature (London) 184,
2-1 507.1 5062.6 60.6 61.6 119 (1959); Proc. Phys. Soc. (London) h*, 337 (1960).
3-1 5047.1 5062.6 "P. f. Wilkinson, J. Chem. Phys. 32, 1061 (1960). Ihe transi-

tion was observed in emission by M. Ogawa and Y. Tanaka,
s A. G. Gaydon, Proc. Phys. Soc. (London) 56, 85 (1944). ibid., p. 922.
*R. Herman, Ann. Phys. (Paris) 21, 241 (1945). "1 K. I). Bayes and G. B. Kistiakowsky, J. Chem. Phys. 32,
,A. E. Grun, Z. Naturorsch. 9a, 1017 (1954). 992 (1960).
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the great strength of the second positive bands in the TA1LE V. Progressions to a 'II,. Wavelengths of heads.a

same region. Gaydon in fact believed that two systems
were present, one in the visible and one in the near Transition )(k)"N, )(MN,
ultraviolet. Recently rotational analyses" have been k-O 2281.5 2294.2
made of two of the ultraviolet bands and one of the h-t 2371.6 2382.3

visible bands and this work shows that both groups do h-3 2569.5 275.0

in fact belong to a single system which has the well-

known B 1I1, state as the lower state. The upper state, $'-O 2397.1 2407.9

C', was shown to be of Species II. in which the coupling s'-2 2603.3 2608.6

was almost pure Case b. r'-o 2671.7 2676.8
The vibrational quantum number of the upper level r'-1 2796.0 2797.5

has been given the most natural value of = 0 but M-1 2877.9 2883.4
as some isolated ultraviolet progressions have been ,m-2 3020.3 3021.5

shown to arise from excited vibrational levels (see be- 2795.4 2802.9
low), it seemed worthwhile to check the vibrational d-1 2932.0 2935.2
numbering in the C' state. It was also hoped to make an d-2 3079,9 3078.4

estimate of ,.' from the isotopic shift. Furthermore, as
the potential curve for the C' 1H, 'state must "cross" 'In this and in the subsequent Tables the wavelengths for "Nt are taken

that of the C 11,. state, the possibility arises that an frown Ref. 1.

interaction between these two states of the same species
might give rise to an anomalous isotopic shift. In par- violet as the 1-4 and 1-5 transitions of the system. On

ticular it is conceivable that the C' state might behave this identification one estimates (a to be -,1450 cm-',
like a higher vibrational level of the C . state. which is much greater than the values derived above.

Due to the unfavorable shifts in the "6N% spectrum However, for independent reasons, it has been sug-
most of the Goldstein-Kaplan bands are rather badly gested'2 that the bands of Hamada do not belong to
obscured by strong second positive bands. In fact it was the Goldstein-Kaplan system, a view which seems to be
possible to make measurements on only three bands confirmed by the present results. This is satisfactory
and these data are not of high precision. The results are because it is believed that the C' "1,. state either goes
given in Table IV and it is seen that to the accuracy of to the dissociation limit 4S+-D or else is predissociated
the measurements the shifts are accounted for by the by some state from this limit.
isotopic displacements in the B 'II, state. This shows
that the Goldstein-Kaplan bands arise from the v = 0 vIL. NEAR-ULTRAVIOLST BA"DS

level in the upper state and that there is no anomalous The main features of the N2 spectrum from 2000 to
isotope shift. 3000 1 are the second and fourth positive bands. Under

Using a suitable mixture of isotopes some observa- suitable excitation conditions, however, numerous other
tions were also made with "N "IN and in this case the bands appear which have been assigned to a considera-
shift in the 0-11 band could be measured quite ac- ble number of systems. These systems may be classified
curately. By combining this with the calculated dis- as falling mainly into two groups: (1) Those involving
placement in the v =11 level of the B qI, state, the transitions from highly excited states to the well-
actual displacement of the upper level could be ob- known a 1II, state. Most of these systems consisted
tained. From the resulting value, 7 cm-', it was possible apparently of the '= 0 progression only. (2) Those aris-
to estimate w. as k-860 cm"- for the C' 11g. state. The ing from transitions between the x %Z-, a' IZ.-, y Inq,
value obtained from the relationship w, =B'/DI is 651 W 'I., and s 'A, states.
cm-' and, considering the uncertainties involved, these
two results may be taken to be in reasonable agreement. a. r'-a, s'-a, and h-a Bands
Hamada" classified two weak bands in the near ultra-

These three systems were first observed by Gaydon"
TA= IV. The Goldstein-Kapanbands. P, heads. while Herian independently discovered the A-&

transition. Although working at fairly low resolution,
'1, (cm'-') Gaydon was able to analyze the fine structure of some

4 calc. for
,'--" W (t)XN X(A) N (cm-)obs B Sl, bands in each transition. Subsequently Lofthus1'

studied the rotational structure under much higher
0-11 4728.4 4613.0 529 535 resolution. In all three cases the upper states were
0-10 4432.3 4335.3 505 502
0-7 3707.1 (3653.7)- 394 386 shown to be IZ,+ and some anomalies in the rotational

structure and in the vibrational intensities were re-
caculated fe A .Pbd obscured. ported.

"P. K. Carroll, Proc. Roy. Soc. (London) AM72, 270 (1963). "A. G. Gaydoa, Proc. Roy. Soc. (London) A12, 286 (1944).
"H. Raad, Phil Mag. A 2,5 (1937). "A. Loithus, Can. J. Phys. 3N 216 (1957).
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Table V gives the wavelengths of the heads of these dence for its presence could be found. (5) The w. value
bands measured in both "N, and '6Ni. The most is rather large, especially when compared with the
convenient way of treating the data is to combine the rotational constants of the levels.
isotope shifts for the a 11, state, which can readily be Despite , these difficulties, the possibility that a
computed, with the observed band displacements and single state is involved cannot be ruled out.'6 The
hence find the isotopic lowering of the upper levels. The anomalies listed above may be due to perturbations and
results of this procedure are shown in Table VI. From predissociations 7 which are likely to be common at the
these data it is at once evident that none of the upper high energies where the levels lie. If in fact a single state
levels corresponds to v=0. While it is fairly obvious is involved, the vibrational structure at least would
that the value of v in the r' level is probably unity, the suggest that it is a Rydberg state as the w, value,
numbering of the other levels, for which the shifts are 2191.5 cm-', is very close to that of the X 'Z,+ ground
considerably greater, is less certain. However, the state of N2+ (2207.2 cm- 1).
transitions involving s' and h could very reasonably be
assigned to vibrational levels with v=3 and 4, respec- b. m--- and d--a Bands
tively, and as the upper states are of the same species, Herman' and Janin s observed two progressions of
1Z.+, it is just possible that the three progressions belong bands which were considered to arise from the levels
to a single system. The levels r', s', and h can in fact be
fitted satisfactorily to a vibrational formula with .=
2191.5 cm -', xw.= 9.6s cm -'. Furthermore, as shown in TABLE VI. Isotope shifts for the k, s', ,', m,
Fig. 1, the isotopic shifts in the upper levels plotted and d levels of N2.

against G'(r) yield an essentially straight line which Ex AV Suggested B
passes through the origin. (See, however, below.) State (cm-') (cm-) v value (cm-)

Nevertheless, several difficulties arise in considering
the three progression as belonging to the same system: h 'Z+ 112 767.7 274 4" 1.655
(1) The B values, although of similar magnitudes, do s' Z.+ 110 656.5 215 3b  1.595

not decrease in the usual regular way with increasing v ,, 'Z+ 106 368.3 98 1 1.711
(see Table VI). (2) While the isotopic shifts in the m'In. 105 343.7 10 5or6 1.361
upper levels plotted against G'(v) give a straight line, d... 104 713.2 122 5 or 6
their magnitudes are noticeably less than the computed
values (see Fig. 1). (3) The V'=2 progression is not Em" oflevel in ,% relve to P-0 d ri wd stte
included in the analysis. This could be identified as the bA jm*e', s. sWkbam t aso
k-a progression of Lofthus' as the upper state is of the 'r-AN
correct species and energy, but the B value (1.425 "The r' level is known to be predissociated for J>11. The
cm-') would be quite anomalous. (The k-*a bands were breaking off in rotational structure occurs at 13.214-1-0.003 eV

which is just below the dissociation limit 4S+IP at 13.330 eV.
not observed in 'aN2 due, it seems, to their being dis- The predissociation is therefore almost certainly due to a repulsive
placed in such a way as to be obscured by adjacent state from 'S+'D. Consequently the predissociating state must

be either triplet or quintet so that the process is an intersystem
one. The appearance of bands from higher vibrational levels

2.) (4) The v=0 progression is not observed. In particu- would therefore not be surprising. The predissociation also
lar the 0-0 band in both "No and 'SNs should lie in a most likely falls into Case c+ of Mulliken [W.Chem. Phys. 83,247

(1960)1. Here the curves cross rather sharply so that on the
comparatively clear spectral region but no good evi- Franck-Condon principle the reappeance of transitions from

higher vibrational levels will be favored.
0 The is for the single system would be 35 246 cm- . NJ. Janin, Compt. Read. 217, M (1943).

355



EMISSION SPECTRUM OF N2

v = 0 and I of a state d, the lower state of the transition TABILE VIII. Kaplan's first system. y 'Up-a' ;-.

being a II,. The V= 1 progression was independently X
discovered by Gaydon" and was later studied under -' (A) "N, X(A) N, (cn-')
high resolution by LofthusI6 who confirmed Gaydon's 0-3 2381.7 2374.0 136
analysis of the upper state as 'I,. This particular level 1-4 2366.4 2360.2 Ito
has been identified as the lowest observed vibrational 0-2 2301.9 2297.1 92

0-1 2225.9 2223.8 43
level of the x state of Worley." 0-0 2153.6 2154.0 -to

In the present work the two progressions were ob-
served in both "4N2 and "IN2 and the measurements are
given in Table V, while the resulting isotopic displace- first observed level of the m state at 105 347 cm-I has a
ments in the upper levels are given in Table VI. It is vibrational quantum number of 5 or 6.
quite clear from the magnitudes of the shifts that the Little can be said about the d state except that it is
vibrational quantum numbers must be greater than 0 an excited vibrational level. However, its energy 104 713
and 1. If the bands are assigned to a single system, the cm- , is very close to that of the second observed vibra-
most likely values for v are 4 and 5. This interpretation, tional level in the I progression of Worley" at 104 702
however, gives poor quantitative agreement with cn - . If this identification is made and the procedure
theory and would suggest a negative value of xwe for for the m state applied, one finds that vibrational
the upper state. For this reason it is believed that the quantum number to be 5 or 6, the latter value being
two levels belong to different electronic transitions, slightly favored. The first member of the I-X progres-
This is supported by the fact that the vibrational sion would therefore have v=4 or 5. However, the
interval, 640.3 cm- , would be too small to correspond identification is quite tentative and for confirmation a
to an extension of the m progression of Worley. rotational analysis of the d-a bands would be re-

The vibrational numbering in the m state cannot be quired.
determined with great certainty because (a) the three c. Other Bands Involving the a 111, State
bands observed in the far-ultraviolet spectrum show a
somewhat anomalous spacing, and (b) the isotopic On the plates of 4N2, several of the other singlet
shift is known for only one level. The procedure adopted systems were present. In particular, bands of the
was to use the two equations AG(v+1) = w-2xcw(v+ 1) p'--a, l-a, k--*a, g--a, and d'--a transitions were ob-
and A= (l-p)ao(Y+-) -(l-p)x,(v+ )'; in the served. However, in these cases the analogous bands in
first of these, the lowest observed vibrational interval, "Ns could not be found or identified due to unfavorable
764 cm - , for the m state was introduced while in the shifts with respect to the strong second positive bands
second the observed isotopic shift was used. Over the or due to blending with other structure. Conversely,
likely range of xw, (say 4 to 12 cm- ), the resulting value some bands were found in IIN whose analogs in "1N1
of v lies between 5 and 6. We can therefore say that the are apparently not known. In particular, three bands

degraded to shorter wavelengths at 2667.9, 2787.9, and
TABLE VII. Fifth positive system. x Z-a' 2916.7 ., are fairly obviously the v-0, v-1, and v-2

bands, respectively, of a new progression to the a qIII
, AV state. The observed AG values for the lower state are

'-9" A(1)'IN, A,(A)IN- (cm-)obs (cm- ) calc 1612.0 and 1583.9cmr, while those calculated for aII,

2-2 2165.2 2166.4 -27 -29 in "N are 1610.8 and 1585.0 cm- . The bands have a
1-1 2181.5 2182.3 -17 -18 structure rather similar to the I-a and s-a transitions
0-0 2198.9 2199.1 -4 -6 so that the upper state is probably 1X. The new state
2-3 2235.9 2234.9 21 29 lies at 106 760.7 cm-r above the ground state of "IN2;
0-1 2274.3 2272.0 44 44
1-3 2331.1 2326.6 82 88 the corresponding energy for 'N, cannot be determined
1-4 2411.8 2404.6 124 119 as only one vibrational level of unknown v is observed in
2-6 2469.9 2460.6 153 151
1-5 2496.7 2486.5 164 168 he 1N2 spectrum.
0-4 a 2513.7 181 Several other new bands were found in both "Nt and
2-7 2556.2 2543.7 194 192 "N, but no satisfactory groupings or correlations could
1-6 2586.6 2572.7 209 210
2-8 2647.1 2631.3 227 223 be made.
1-7 2681.5 2663.5 253 251 d. Fifth Positive and Related Systems

Obscured in 3N% spectrum. The lower state of the fifth positive bands,14,20,21
" R. E. Worley, Phys. Rev. 64, 207 (1943). In the earlier note x IZp--la 12,-, is also the lower state of Kaplan's

(Ref. 2) on the present results, it was suggested that the progres- first system,".-' y If,-a' 'Z-. Furthermore, it com-
sion might not have m as the upper state. This was based on the
B value, 1.461 cm- given by Lohthus (Ref. 1, p. 25) for the near "A. Van der Zie, rhysica 1, 513 (1934).
ultraviolet bands. in the original paper, however, the B value 1' A. Lofthus, J. Chem. Phys. 25, 494 (1956).
is given as 1.361 ca- which agrees well with Wbrley's value, 1.36 a J. Kaplan, Phys. Rev. 46, 534,631 (1934); 47, 259 (1935).
cm-, for the in state. This together with the other evidence shows "A. Lfthus and R. S. Mulliken, J. Chem. Phys. 26, 1010
that the upper state of the two tranaitions is in fact the same. (1957).
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TABLE IX. Kaplan's second system. y II,-w 'A.. puted. The values obtained were 38 and 95 cm - which
show that the vibrational levels involved are v= 0 and

'-" x (1)14N2 X(A)N, AP (cm-') v= 1, respectively. It is also clear that the two progres-

0-4 2741.9 2728.0 186 sions belong to the same system. This was the interpre-
1-5 2722.0 2709.4 171 tation of Lofthus and Mulliken," in spite of the anoma-
0-3 2636.2 2626.6 138 lous behavior of the B values (B > Bo).
1-4 2619.3 2610.3 132
0-2 2536.6 2530.8 90 In principle it should be possible to determine w, and
1-3 2522.3 2517.2 81 xwe for the y state from the isotope shifts and the ob-
0-0 2354.5 2355.2 -13
1-0 2263.4 2266.9 - 69 served AG() values. Attempts to do this were unsuc-

cessful however. The reason, it is fairly clear, is that a
vibrational perturbation is present in the v= 1 level.

bines both in emission24 and absorption"' with the Confirmation of this is provided by the fine structure
ground state. All the observations leave no doubt as to analysis of the v = 1 level by Lof thus and Mulliken .2

the vibrational numbering of the a' state. The original They found that the rotational levels were considerably
numbering for the upper state x has been modified by displaced from their normal course, the displacement
Gaydon14 and the satisfactory intensity distribution varying smoothly as a function of J. It is this behavior
within the system indicates that the vibrational which gives the anomalous B, value mentioned above
analysis is correct. However, as the system was well and the effect is one which might well be expected as
developed on the present plates, it seemed worthwhile the result of a vibrational perturbation.
to measure the isotopic shifts as a final check. The data SUMMARY
are given in Table VII and the good agreement be-
tween the observed and calculated shifts shows in fact The vibrational numbering of most of the weaker
that the vibrational analysis is correct. systems of nitrogen in the region 2000-9000 X has been

Kaplan's first system, y-a, although moderately established or confirmed. In particular the vibrational
intense, is less extensive than the fifth positive system analyses of the Herman infrared system, the Herman-
and there is consequently more uncertainty about the Gaydon green system, the B'-B bands, the Goldstein-
vibrational numbering of the upper state. Five bands Kaplan system, the fifth positive and Kaplan's first
were observed in the 15N2 spectrum, the measurements and second systems are now known with certainty. In
for which are given in Table VIII. It is clear from the the v= 1 level of the y II, state, evidence is found for a
magnitudes of the shifts that the vibrational analysis is vibrational perturbation which can be correlated with
correct especially as the isotopic displacements of the the unusual rotational structure of this level.
levels in the lower state are known. The upper state will The progressions in the near ultraviolet to the a II,
be considered in some more detail below, state show a curious behavior. The m--a and d--sa

Kaplan's second system involves a transition from progressions belong fairly definitely to different transi-
from y 'II, the upper state of the first system, to the tions and in each instance we have a single vibrational
w 'A, state. In the present work, the results of which are level of fairly high v (5 or 6) being excited. A similar
given in Table IX, the second system was better de- effect may be taking place in the r'--a, s'--*a, and
veloped than the first and it was therefore used for k---a progressions, but in this case it is possible, but
studying the vibrational structure of the y state. Due by no means certain, that the bands belong to a sin
to the fact that only two vibrational levels are observed, gle system. In any event, the behavior is not easy tt
it is not possible to determine the vibrational constants explain. Because of the range of energies involved and
c .and xcii. As in the case of single progressions there- because of the nature of the source, it is difficult to
fore, the isotope shifts calculated for the lower states believe that selective excitation in the usual sense is
were combined with the observed band displacements occurring. It seems more likely that the effects are due
and the lowering of the upper levels were thus com- to processes in the molecule itself and that their inter-

M. Ogawa and Y. Tanaka, J. Chem. P1 ys. 36, 1354 (1959); pretation will depend on a fuller understanding of the
32 754 (1960). high energy states of N2 and the interactions between

0P. G. Wilkinson and R. S. Mulliken, J. Chem. Phys. 31, 674 them.
(1959).

" In Ref. 23, the values of to, and xi., for the w state were given ACKNOWLEDGMENT
as 1548 cm-1 and 8 cm- , respectively. These proved unsatis-
factory so the data were re-examined and the values ..- 1557.7 We are grateful to Professor R. S. Mulliken for his
and xw.- 11.5 cm- derived. With the new constants the vibra- i g
tional structure of both 'IN: and "IN, could be represented within interest in this work and for his helpful comments on
experimental error. the manuscript.
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Spectrum and Structure of the He* Molecule. I. Characterization of the States Associated
with the UAO's 3pq and 2s*
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The He: band systems 3pa-, '1,%+--2s, .-'Z,+ are described in detail. The rotational and vibrational
constants of the 2s, a 32.+ and A %n+ and 3pw, c Z,+ states are improved and the data for the A and c
states extended from v- I to v-3 and 4, respectively. The 3pr C IZ,+ state (identified for the first time) has
been characterized through v- 5 . The apparent dissociation energy of the c 32,+ state is found to be ,-0.7
eV too high to be consistent with the theoretical dissociation energy of He2+. If the Do value for He2+ is
correct, large maxima must be present in the potential curves of a number of electronic states of Het. Also
discussed is the observed and expected behavior of states associated with xPW UAO's.

L INTRODUCTION for He2 are the a 32.+ and A 12.+ states of configuration
t um21o,2s. The lowest-lying stable states involving

"W HeIE the spectrum of the He2 molecule was npo UAO's must be of the configuration 1a,,31o,3pa,
•• extensively investigated prior to 1935, few spec- since the 1oa MO correlates as Y--+0 with the UAO

troscopic additions have appeared since that time. How- form 2pff.1 The only previously observed transitions
ever, recent theoretical work on the Rydberg states involving npja MO's were the 0-0 and 1-1 bands' for
of molecules' has drawn attention to the incompleteness the transitions 3pa, c ,+---+2s, a 3Z,+, and several
of the existing experimental data, two of the more 0-0 bands corresponding to transitions from higher
obvious deficiencies2 being a general lack of vibrational members of the ns and nd triplet series to 3po, c IZ,+.

information and the almost complete absence of transi- In the present work it has been possible to obtain
tions associated with npo- MO's. Therefore, in order sufficient vibrational structure for the c---*a transition
to remedy these defects and to clarify the behavior to determine accurate molecular constants for both
of the various molecular states at large internuclear the c and a states and to make reasonabli estimates
distances, an extensive reinvestigation of the He2 spec- of the apparent dissociation energy of the c %Zj+ state.
trum has been undertaken. In addition, the previously unreported 3pir, C 1i,+-2s,

Although the entire Heg spectrum between 2800- A 12+ transition has been observed and both the C
11 500 1 is under study, this paper is concerned pri- and A states characterized.
marily with the transitions 3pa, "2 IZ-.2s, "'Z,+ which
occur in the region 7000-10 000 A. For the He, mole- 11. EXPERIMENTAL
cule, the ground-state configuration' lo,' Ia1 ' is un- The conventional methods of producing the emission
stable, but many stable states exist for configurations spectrum of He.. consists of passing a mildly condensed
corresponding to the excitation of one of the l, discharge through flowing He gas a mildly c bout
electrons to a Rydberg MO, which can be best charac- 20-40 mm. However, in initial experiments s of aound
terized by a UAO symbol. Transitions among these that the visible spectrum coux be greatly enhanced
stable Rydberg electronic states produce a discrete
spectrum on the long-wavelength side of about 3000 , by the complete removal of trace impurities of H: and
whietransiionso the uon a blegr s atoduce argon. Thus, sealed discharge tubes filled to pressures
while transitions to the unstable ground state produce of about 40 mm with assayed reagent-grade helium
the well known "Hopfield" continuum in the vacuum were used in the present work. These tubes have very
ultraviolet. The lowest-lying stable electronic states long lifetimes,' while the resulting He, emission is

*This work was supported by a grant from the National completely free of atomic or molecular contaminants
Science Foundation, NSF GP 28 Research, and by the U.S. Air
Force Cambridge Research Laboratories, Office of Aerospace ' W. F. Meggers and G. H. Dieke, J. Res. Nat]. Bur. Std. 9,
Research, under Contract AF19 (628)-2474. Preliminary discus- 121 (1932).
sions were presented at the Regional American Chemical Society A G. H. Dieke, S. Imanishi, and T. Takamnine, Z. Physik 57,
meeting in Charlotte, North Carolina (1963), and at the Ohio 305 (1929).
State Symposumi on Molecular Structure and Spectra in Colum- 0 For an excellent discussion of the "conventional" procedures
buts, O io e1964). and aparatus, see R. E. Huffman, Y. Tanaka, and J. C. Larra-

IR. S. Mulliken, J. Am. Chem. Soc. 86, 3183 (1964); Parts bee, ppl. Opt. 2, 617 (1963). While Huffman a al. describe
VI and VII of this series (to be published), optimization of the He, continuum in the 600-1100-A region,

2G. Herzberg, Spectra of Diatomic Molecutes (D. Van Nostrand similar conditions seem to apply to the visible Hes spectrum ob-
Company Inc., New York, 1950), 2nd ed., Vol. 1. tained from discharge tubes using flowing He gas.

3Unitcd-atom orbital (UAO) symbols are used throughout I One tube at least has been used over 600 h without any notice-
this paper, since the Rydberg MO's (molecular orbitals) for He, able change in its spectral properties. In general the tubes are
in the region around r, would correspond fairly closely to the il-shaped, with tungsten electrodes sealed into tieir side arms.
united atom form. The Hei+ core would more closely correspond They are cleaned and filled by the same general procedures em-
to the LCAO form elstuls. Since no confusion results, core ployed to make sealed Xe and Kr lamps for use in the vacuum
symbols are often omitted and a single UAO symbol used to ultraviolet; cf. P. G. Wilkinson and Y. Tanaka, J. Opt. Soc. 45,
designate a Rydberg MO. 344 (1955).

358



MARSHALL L. GINTER

and is at least several times more intense than the and II to the relation'
emission from similar tubes utilizing conventional 2

flowing pro Qiures. An air-blow spark gap in series 62F.(N) = aj(N+2)+", (1)
with a 15 000-V transformer, together with a capaci- i-0
tance of about 1500 upF supplied the condensed, dis- where
ruptive discharge used in excitation of the spectrum, ao= (4B,-6D.+'-H,),
with the power input to the transformer being generally a,= -(8 -28H),
about 200 W. and

The 7000-11 000-1 region of the spectrum was photo- and
graphed in the first orders of two spectrographs: a as= +12H,. (2)
30-ft Paschen circle and a 3.4-m Ebert, with reciprocal The B,, D,, and H, constants in (2) are te first three
dispersions of approximately 0.9 and 2.0 A/mm, re- coefficients of the expansion of the rotational terms
spectively. For spectrograms taken on the 30-ft circle, in the power series
exposure times on hypersensitized I-N and I-M
plates ranged from a few hours for the stronger bands FN)--B.N(N+1)-D.N'(N+1)'
to as much as 50 h for the weakest. Using the Ebert +HN'(N+1)1+... , (3)
spectrograph, comparable exposures were obtained in
about one-fourth the time required for the circle. The and the lower- and upper-state AjF&(N)'s are given
effective resolving power ranged from about 100 000 by R(N-1)-P(N+1) and R(N)-P(N), respec-
for the shorter exposures to about 70 000 for the tively. In all cases, the a, values were determined both
longest, the higher figure being attained only on circle by the method of least squares and by standard
plates. Iron arc lines--superimposed before, during, and graphical procedures.' Using the method of least
after the exposures-were used as standards, and meas- squares, one finds that the values of the constants in
urements were made by the superposition of optical Eq. (1) are somewhat dependent on the total number
density profiles using a Grant spectrum line measuring of A2F,(N)' used in their determination (i.e., the
comparator. In almost all cases, the spectrum lines as's change slightly as one successively deletes from
were measured on three different circle plates and one the calculations the A2F,(N)'a corresponding to the
Ebert plate, and the resulting wavenumbers averaged, highest N values). As expected, this effect is small
In some regions, the maximum deviations in the for ao, but can be appreciable for a, and a2. In each
"absolute" line positions determined from the four case, the various ai values determined by different
sets of data reached values as high as 40.03 cm'. least-squares fits of the data were averaged with the
However, the agreement of the relative positions of results of the graphical method (the ao and a, being
unblended lines was generally somewhat better, being determined by intercept procedures).s The final values
in most instances within about 4-0.01 cm-. of B., D,, and H, obtained from (2) are listed in

Table III.1
III. ANALYSIS OF THE SPECTRUM AND Band origins P(V', V") were obtained by fitting the

EVALUATION OF MOLECULAR CONSTANTS data in Tables I and II to the relation

In any molecular spectrum which has its branch R(N) +P(N) = Pb jN(N+ 1)', (4)
lines widely separated from one another, rotational i-_

analysis must precede everything but the most tenta- both by graphical methods' and by least squares, where
tive electronic-state and vibrational-level estimates. In /of 2v(,,.,,,-2B,,+4D,,. (5)
the case of 'He2 this is particularly true, since 'He
has a nuclear spin of zero which requires alternate lines Band origins obtained from the two methods of fitting
to be missing. Also, it should be noted that the triplet (4) agreed to =-0.01 cm -' and fell into three sequences
splitting for most of the electronic states of Hes is too corresponding to Av=0, +1, and +2 as shown in
small to be resolved, the only known exception being Tables IV and V. It should be noted that the peculiar
the partial resolution of the splitting for the 2pit, distribution of these tables is due to the rapid loss in
Ml state. photographic plate sensitivity to the long-wavelength

The wavenumbers of the lines of nine bands of the side of about 8900 1 (11 200 cm-1). This feature also
transition 3par, c IZ,+---+2s, a 12.+ and eleven bands accounts for the many P(N) branches in Tables I
of the transition 3pc, C 'Z,+--*2s, A 'Z.+ are given and II which are much shorter than their associated
in Tables I and II. Since the triplet splitting is not R(N) branches.
resolved for the c--*a transition, the triplet states neces- I F. H. Crawford and T. Jorgensen, Phys. Rev. 47, 358 (1935).
sarily must be treated in the same manner as the singlet ' As a further check, AB AD,, and AM. values were calculated
states. Thus, the effective rotational constants for all using the ., ,, and b, coeicients obtained from the least-squares
bans. wer, otaed byffetirtatingat dtaintes r a determinations of the band oriins Eq. (4)1. These r-milting
bands were obtained by fitting the data in Tables I values were in agreement with th constants listed in Table III.
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SPECTRUM AND STRUCTURE OF Hes. I

TABLE I. Wavenumbers of the bands of the c 3Z.+-a 'Z.+ transition of Hes.&,b

(0-0)e (1-0) (1-I)
v(0-0) 10 889.48 Y(u-0) -12 369.50 V(I-t) -10 637.37

N R(N) P(N) R(N) P(N) R(N) P(N)

1 10 915.43 10 874.31 12 393.64 12 354.34 10 662.00 10 622.67
3 935.34 839.61 409.41 317.85 680.19 588.58
5 949.18 799.17 416.69 273.28 691.79 548.31
7 956.84 753.14 415.36 220.64 696.71 501.97
9 (958.17) 701.61 405.24 160.10 694.78 449.61

11 953.13 644.64 386.20 091.68 685.88 391.31
13 941.58 582.40 358.06 12 015.46 669.83 327.18
15 923.40 514.92 320.60 11 931.40 646.42 257.18
17 898.47 442.28 273.59 839.49 615.42 181.35
19 (866.66) 364.54 216.68 739.68 099.57
21 827.75 281.76 149.98d 631.80
23 781.58 193.89 12 071.82 516.12d
25 727.90 100.86 11 982.70 391.10
27 666.37 881,48 257.40
29 596.52 767.05 113.99
31 517.86 638.51

(2-0) (2-1) (2-2)
V(s-o) 13 741.22-0.06 uo:-1) 12 009.08 (-g) = 10 354.74

N R (N) P (N) R (N) P (N) R (N) P (N)

1 (13 763.47)- f 12 0,31.73 11 994.38 10 377.85 10 340.58
3 (774.52) 13 687.62 045.22 958.29 393.85 306.96
5 (774.52) 638.33 049.50 913.39 402.55 266.50
7 (763.47)- (578.49) 044.40 859.70 403.88 219.22
9 f 507.78 029.51 797.26 397.46 165.27
11 705.19 426.49 12 004.79 726.08 383.20 104.50
13 658.17 334.41 11 969.86 646.14
15 598.60 231.48 924.37 (557.23)
17 525.98 13 117.47 867.79 459.31
19 439.72 12 992.08 799.55 351.94
21 338.82 854.81 718.76 234.76
23 221.71 704.96 623.76 107.06
25 540.99

(3-1) (3-2) (4-2)
1(3-1) 13 256.64 V(s_--11 602.29 (4-2)- 12 698.13

N R(N) P(N) R(N) P(N) R(N) P(N)

1 13 276.95 13 241.95 (11 623.06) il 588.20 12 715.94 12 683.93
3 285.02 203.53 (633.67) 552.14 719.44 645.00
5 280.64 153.17 (633.67) 506.25 708.40 592.10
7 263.56 090.83 (623,06) (450.31) 682.12 525.02
9 233.38 13 016.46 (601.29) 384.42 639.98 443.52

11 189.65 12 929.95 568.03 308.36 580.82 347.01
13 131.79 830.96 522.64 221.83 503.04 234.62
15 13 058.97 719.13 464.39 124.53 104.98
17 12 970.19 593.86 392.40 016.13
19 863.82 454.32
21 (737.67) 299.03
23 12 125.94

Parentheses denote blended lines.

b The estimated error of all band origin determinations, with the exception of the (2-0) band, is ,'--0.w cm-'.

This band waS reported in part by Meggers and Dieke (see Footnote 4). Because of the much higher dispersion and resolution of the instruments used in the
present work, the values reported below may be more accurate than the previous data.

d Perturbed lines.
* Strongly overlapped by Rt of H 'Z +-C 'Z* (0-0).

Completely obscured by the 7281-T line of lie I.

360



MARSHALL L. GINTER

TABLE II. Wavenumbers of the bands of the C IZ,+---A IZ.+ transition of Hes.h.b

(0-0)(1-1) (1-0)
P(0-S) 10945.50 J(i-I) 10 726.57 J(Z-O) -12 517.32

N R(N) P(N) R (N) P(N) R(N) P(N)

1 10 971.82 10 930.17 10 751.85 (10 712.00) 12 542.16 12 501.98
3 (10 992.25), 895.20 771.06 677.48 559.13 465.52
5 11 006.70 (854.69)d 784.13 637.44 568.15 421.46
7 015.10 808.48 790.92 591.71 569.12 369.92
9 017.40 757.00 791.39 540.41 561.98 311.00
11 013.50 700.28 785.47 483.63 546.63 244.83
13 11 003.38 638.42 773.07 421.54 523.02 171.51
15 10 987.01 571.55 754.13 354.25 491.07 091.20
17 964.30 499.88 728,60 (281.76) 450.69 12 003.93
19 (935.34) 423.42 401.81 11 909.85

21 899.75 342.40 344.34 809.03
23 256.90 278.18 701.56
25 203.18 587.31
27 119.15 (466.31)
29 12 025.84 338.86
31 11 922.99

(2-0) (2-1) (2-2)
3(Z-o) = 14 006.61--0.06 - 12 215.80 (14 )-10 496.13-0.06

N R (N) 1 (N) R(N) P (N) R(N) P(N)

1 14 029.8. 12 239.55 12 200.89 10 520.35
3 043.34 (13 953.66) 255.13 165.15 538.23 10 448.3
5 (046.59) 905.64 262.48 121.49 549.68 408.66
7 039.74 848.34 261.48 070.11 554.62 363.20
9 14 022.71 781.58 252.06 12 010.99 552.96 311.86

11 13 995.31 705.54 234.10 11 944.32 544.52 254.7

13 957.56 e 207.48 870.20 529.33
15 909.07 525.73 (172.13) 788.65 507.18
17 850.06 421.94 127.86 (699.79)
19 780.13 309.19 074.60 603.64
21 699.13 187.31 12 012.13 500.23
23 607.03 13 056.31 (11 940.20) 389.58
25 12 916.08 858.66 271.52

(3-1) (3-2) (4-2)
'(- - 13 617.93 J'*-"I11898.22 P(4-2 - 13 206.39

N R(N) P(N) R(N) P(N) R(N) P(N)

1 13 640.0. 13 602.9. 11 920.78 11 883.78 13 227.14 13 191.95
3 651.78 565.63 934.78 848.66 236.94 155.03
5 653.05 518.14 (940.20) 805.27 235.71 107.42
7 643.79 460.64 936.79 753.68 223.23 13 049.20
9 623.74 393.24 (924.37) 694.02 199.32 12 980.44
11 592.87 316.00 903.24 626.37 163.82 901.17

13 550.98 228.95 872.76 550.74 116.42 811.33
15 497.89 132.14 832.93 467.17 13 056.86 710.83
17 433.41 13 025.58 783.53 375.70 12 984.71 599.61
19 357.22 12 909.18 724.26 (276.28) 899.45 477.44
21 269.02 782.88 654.86 168.74 800.50 343.90
23 168.37 646.44 574.88 198.56
25 054.77 499.59 483.79
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TABLE II (Confinued)

(4-3) (5-3)
Y'("-)-11 558.42 P(-)-12 761.75

N R(N) P(N) R(N) P(N)

1 11 579.61 11 544.44
3 591.78 509.83 12 788.34 12 711.17
5 594.70 (466.39) 783.81 663.04
7 588.13 (414.22)' 766.94 603.32
9 572.25 353.38 (737.67) 532.04
11 546.49 283.84 695.50 449.20
13 510.78 205.64 (639.98) (354.85)
15 464.78 118.76 570.50 (247.84)
17 486.43 128.70

* Parentheses denote blended lines.
b The estimated error of all band origin determinations, with the exception of the (2-0) and (2-2) bands, is 5--0.07 cm- 1.
* Overlapped by Pa offllU.- 1Z 5 (0-0).
d Overlapped by Q% Pe offs1I.-ecs, (0-0).

* Completely obscured by A, H 'Z,+-C 1Z,
+ 

(0-0).
Overlapped by Ps of 84- -c $Z, (1-1).

The B. and AG(,+j) data in Tables III-V were fitted a rather rapid and monotonic decrease in the various

by least squares to the usual (v+j) expansions' of the effective constants. The values reported in Table VI
vibrational and rotational energies. For the c %Z9 + and correspond to the minimum set which reproduces the
C 1,5+ states, the values of these coefficients depended experimental data within the estimated errors.
somewhat on the number of terms used in the expan-
sions-a phenomenon occurring fairly frequently in the IV. DISCUSSION
excited electronic states of light molecules (i.e., H2,
hydrides, etc.). For the states of He2 in question, the Since all of the stable electronic states of He2 are
deviations are relatively small and generally result from Rydberg states, it is useful to preface this discussion

TABLE III. Rotational constants (cm-t).*

a IZ_,+ A 12.+ c z,+ C 'z,+

B. 7.586,-0. 001, 7. 6710E0. 001, 6. 852os"0.002, 6. 945=0.001
B, 7.3487-*-0.001& 7.446,-'-0.0010 6.556 -z0.0016 6.699$-1-0.0010
B: 7.098610.001s 7.2180-E0.001& 6.224,+0.001s 6.441.*=0.001,
B3 6.985,+0.002, 5.837oz1:0.001 6.1667-+0.001,
B 4  5.340-i0.001, 5.8670-0.001&

Bs 5. 530o:0.001,

DOX 1o 5.50--0.05 5.43:0.02 5.56+0.02 5.13--0.02&
D, X 104 5.6-+0.04 5.40*+0.03 5.76:0.02 5.24-+0.01

DAXI04 5.5+0.1 5.41+0.03 6.11+0.08 5.32+0.02
DAX10 5.40-4-0.06 6.98-+0.05 5.56*0.02
D4XIO' 8.574+0.04 5..&:0.03
DX 10 6.60+0.05

Ho XI0' 2.5*0.4 3.04*0.1 1. 3t--0.1, 1.7-*0.2
I iX 10' 2.24+0.5 2.5-0.3 -0.4,.0.2, 1. 6s+0.1I

ItXI OR 2.3+0.4 -5.3+0.9 1.0+0.3
I/sX Iof -13.o41.b 0.0*-0. is

114XIO8 -54. -+2.
b  - 2.4s+0.3

1I5Xl01 -6.-1.0

a The "errors" listed in this table are the maximum deviations from the average of the constants determined by different fitting procedures (see text). As such.

they are a measure of reproducibility and internal consistency of the methods employed and probably give reasonable estimates of the oe-a errors inherent in
the molecular constant determinations.

b The kigkhes rotational levels observed for these vibrational states are not fitted accurately by a three-coefficient expansion of F,(N). The need for a higher.
order constant is evident in both the graphical and least-squares procedures, but the probable reasons for this deviation (see text) are such as to make its
inclusion unwarranted The H. values reported here are determined after excluding the data for the highest N values.

362



MARSHALL L. GINTER

TAEIz MV Demlandres table for the band origins (cm- 1) of the transition 3per, c IZ'..+2s a % of He,.

0 1 2

0 10 889.48
(1480.02)

1 12 369.50 (1732.13) 10 637.37
(1371.72) (1371.71)

2 13 741.22 (1732.14) 12 009.08 (1654.34) 10 354.74
(1247.56) (1247.55)

3 13 256.64 (1654.35) I1 602.29
(1095.84)

4 12 698.13

TABLz V. Deslandres table for the band origins (=7-1) of the transition 3pe, C 'Z.+-e2s, A 1Yf,+ of Hes.

Vol

VP0 1 2 3

0 10945.50
(1571.82)

1 12 517.32 (1790.75) 10 726.57
(1489.29) (1489.23)

2 14 006.61 (1790.81) 12 215.80 (1719.67) 10 496.13
(1402.13) (1402.09)

3 13 617.93 (1719.71) 11 898.22
(1308.17)

4 13 206.39 (1647.97) 11 558.42
(1203.33)

5 12 761.75

TAwz V1. Molecular constants (cnr').

state a'Z%' A 17,+ C 3Z,+a C IZ,+b

T. a A a+11 005.8s A+11 050A8

of 1809.91 1861.27 1583.85 1653.43
WO38.8, 35.0h 52.74 41.0,

ys-0.1050 -1.256. 0.354,
sm-0.487. -0.131,

Be 7.710a 7.787t 7.004, 7.067,
a# 0.243s 0.228s 0.3106 0.244,
oyxl1 0.162, 0.0117s
-Ax 10' -0.06. -0.0135,

1.1 .045, 1.0399 1.0964 1.091,

The higher-order vibrational constats for this state seem smewrbat anommaloss The three~oostmat least-squarso It, while not within the experleal erron
(standad dviatlona-26) sm , regular, and show the trend mmr grapbicaly: G+)i6J(~)-67(+)-~sej

b ma hjghfr-orde, rotaionl oftsta fo this statse semoewbat smemmalem. While hl.edu onsmbmeoqm isn~msenumc such eIe pols
a*y wedctsa a s wuit".I the simmee sa daft Wm tiee mlkmei stambed deviois hs this com Is semmwba haem a &a asti l am. The sent
beuea eeds, li (ateard dswlatim-USS) is gite by ,?U,42smw)4Uhs45
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SPECTRUM AND STRUCTURE OF He 2 . I

with a brief listing of several properties" of Rydberg
states in general. For Rydberg states, (1) at low n, r
the bonding properties of the core-in this case, of He2 C ;

He2+-are somewhat modified by the presence of the 1500 o Experimental Values
Ryaberg electron, but to a rapidly decreasing extent
as n increases; (2) the observed molecular constants
(such as AG,+., B,, etc.) rather rapidly approach those
of the core as n increases; and (3) penetration into the A. 4700cm"
core occurs for Rydberg MO's when the core contains 1000 A+A.740Ocm"

coreoccus A. I 300CM'1
one or more MO's of the same species" (i.e., the Ryd- 'E
berg series has one or more "initial members" in the "
core). Further, the electronic states of He2 obey the A

usual Rydberg relation for neutral molecules: 500

T= R/n *2= R/(n-5)1, (6) A

where 5 is the term defect, R is the Rydberg constant,
n is the principal quantum number for the UAO state A"
in question, and T is the term value.

Because of the general lack of vibrational data for 0.5 3.5 6,5 95 125

He2, consistent values of T usually have been obtained (v. /2)
by fitting the convergence of the (0-0) bands of the
previously observed Rydberg series.' Until this defect HeF. 1. Birge-Sponer extrapolation for the 3pu, c 'Z,+ state of
can be remedied, it is more practical to consider To
values (the energies necessary for the removal of the
Rydberg electron from the =0 level of the Rydberg values. Similar behavior is already well known for the
state to that of He2+) when using Eq. (6), and the ns and np- series, except that the observed AGj and
resulting n* and 6 values must be interpreted ac- B, values decrease with increasing n and approach the

cordingly. asymptotic He2+ values from above, the Rydberg elec-

With the above statements in mind, there are several tron-core interaction for these series resulting in Ryd-

features of the behavior of the states associated with berg states which are slightly more bonding than the

the npa Rydberg series which should be emphasized. He2+ core.

Using the To values for the 2s singlet and triplet states Another result of the previous lack of vibrational
given by Herzberg,2 the P(--)'s from Tables IV and V data was an inability to obtain even a reasonably ac-

and Eq. (6), one calculates n*=2.164 and 2.285 for curate value for the dissociation energy of He2 by direct
3pa, c Z3+ and 3par, C 12 +, respectively, where the means. Estimates2 of Do from the relation uwo'/4xwo

large values of 5, 0.836 and 0.715, are of particular yield D0 12.6 eV for the a 3Y+ state, but such esti-

note. Consideration of the variation of n* values' with mates are at best only very approximate. In addition,
n for the states associated with the known nup series it should be noted that there has been a major objection

of H2 would lead one to estimate n*ct3.24 and 3.30 to a value as high as 2.6 eV, since this requires that the

for the 4pu, %~2 + and 1Z+ states, respectively, so dissociation energy for He2+ be about 3.1 eV, which

that one would predict that these unreported states is 1 eV higher than the currently accepted theoretical

lie 23 650 and 24 230 cm -1 above the 2s, a 32u+ state. values.12 With the more extended vibrational data

Further, one sees from Tables IV-VI that the AGj given in Tables IV and V, one can attempt better

and B. values for the 3pu, 2.,+ states lie slightly estimates. At present, the most advantageous case

below the corresponding values estimated for the ground seems to be that of the c 3Y0+ state, the Birge-Sponer

state of He2+, which are 1627.2 and 7.22 cm-1, respec- extrapolation for this state being reasonably short, as

tively.2 Thus, for low n, the npa Rydberg electron-core can be seen in Fig. 1. In this figure, the "most likely"

interaction seems to produce resultant electronic states extrapolation yields an apparent dissociation energy

which are slightly less bonding than the He.+ core for the c 'Z+ state of about 7400 cn-' The energy
itself. This effect should decrease rapidly with increas- given by Area A", the difference between a linear

ing n, so that the AG and B. values for higher members extrapolation of the last two experimental values and

of the npo series should increase from those of the the "most likely" curve, can be used as a reasonable

3pa UAO and rapidly approach their asymptotic He, +  estimate of the error, while Area A corresponds to the
energy of the last observed vibrational level. Since0 For further discussion of this material, see Refs. I and 2. the a 12,+ state should dissociate into the same atomic

1 In He,, the npo and Ms series have one "initial" member, 2pe
and Is, respectively, in the core and, therefore, will be penetrat- terms as the c 12 + state' (i.e., ls2s, IS+ Is', IS), one
ing. However, the npir series has no core "ancestor" and should obtains from Fig. 1 and Table VI, an apparent dis-
be nonpenetrating. The large term defect observed for the states
associated with the 3pw orbital is attributable in part to its pene- *P. C. Reagan, J. C. Browne, and F. A. Matsen, J. Am. Chem.
trating properties (Ref. 1). Soc. 54, 2650 (1962). See also Ref. 13, Footnote 9.
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to fix the is2p, $S+Sis, IS term limit, one can esti-
mate the positions of the molecular states of He2 rela-

, tive to the known atomic terms, as shown in Fig. 2.3000 ,As is obvious from Fig. 2, all of the excited states of
H. He2 should be intrinsically stable. This feature should

r wa ' , s remain even in the event that a rather high maximum
exists in the 3pa-, %Z,+ potential curve, since one would

3d / expect a similar maximum in the 4pa, Z,+ potential
3.~ A* 3T ' ei 20-000 curve.1'

'/t/ )UISm#S In a recent paper," Mulliken has postulated the
existence of rather high and broad potential maxima

C, OF O; (car') in a number of electronic states of He2; in particular,
c- t /the states associated with the 3pa, 3da, 3dir, and 4f#

<: Rydberg MO's (as well as their higher n-value homo-
130000 logs). Such considerations are compatible with the data
I presented here, although, as pointed out above, the

a Ir experimental results would also be consistent with a
higher value of Do for He2+ than is accepted currentl).

A-.,i It is interesting to note, however, that present studies
is Sof transitions involving the 3d complex (i.e., especially

UJITED ATOM SEPARATED ATOMS the triplet members 3da, 12,+, 3dr, 3f1,, and 3d8, 3A,.)
Fio. 2. Dissociation scheme for the lower electronic states of He,. show that these states are more stable than expected

The relative positions of the v-0 levels of the lower electronic from Fig. 2. In particular, the 3dlr, 1II. state has vi-
states of He2 are taken from Table 39, Ref. 2, and from the pre- brational levels which are quite stable at least through
sent work. The apparent dissociation energy of the +Z+ state
has been employed in estimating the relative positions of the v = 3, a level which is approximately equal to the energy
molecular states and atomic term limits, and the correlations of the 1s2p, 'P+ Is , IS term limit, if the Do(a Z+)
made assuming the validity of the noncrossing rule. estimated from the c %Z+ state is valid, and which

would be considerably above this limit, if one uses the
sociation energy of 2.2.-±-0.1, eV for the a 12.+ state. current Do value for He2+ as a basis. In fact, the general
This is still about 0.7 eV above a value necessary for *behavior of the 3dir, fIIu state is that of a state tending
agreement with the theoretical calculations on He2+; to dissociate into a much higher term limit than is
however, even if one uses the energy corresponding indicated in Fig. 2. Such a situation requires that either
tothe last observed vibrational level in Fig. 1 (which there is a high maximum (intrinsic or produced by
certainly must be above the lowest limit possible since avoided crossing) in the potential curve for this state
rotational levels are known to N>13 in v=4), the or there must be a violation of the avoided crossing
resulting Do for the a %Z+ state would be only about rule. Presently, the experimental evidence cannot dis-
0.3 eV lower than the "best value." Thus, one is led tinguish betwen the two alternatives, although the
to the conclusion that either the theoretical dissociation theoretical considerations" make the former seem more
energy for He2+ is too low or the potential curves for plausible.
the states associated with the 3por UAO exhibit rather
high and broad potential maxima. ACKNOWLEDGMENTS
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